53 Mule Deer Court – Grading Special Use Permit

Attachment 3 Geotechnical Report **GEOTECHNICAL SITE ASSESSMENT** SINGLE-FAMILY RESIDENCE **53 MULE DEER COURT** APN 038-730-39 RENO, NEVADA, 89523

ERIALS

ENGINEERS, INC.

PREPARED FOR:

BRIAN GRAHAM

STRUCTION

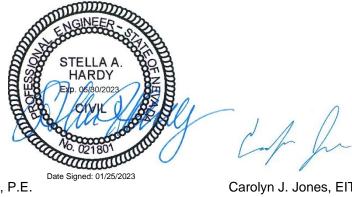
JANUARY 2023 FILE: 3109

300 Sierra Manor Drive, Suite 1 Reno NV 89511

January 25, 2023 File: 3109

Brian Graham bgraham@qdconstruction.com

RE: Geotechnical Site Assessment 53 Mule Deer Court Single-Family Residence APN 038-730-39 Reno, Nevada, 89523


Dear Mr. Graham,

Construction Materials Engineers Inc. (CME) is pleased to submit our geotechnical site assessment for the proposed single-family residence to be constructed at 53 Mule Deer Court, Reno, Nevada. The following report includes the results of our field investigation, laboratory testing, and presents our recommendations for the design and construction of the project.

We thank you for the opportunity to provide our services and look forward to working on future endeavors together. Please feel free to call us should you have any questions or require additional information.

Sincerely,

CONSTRUCTION MATERIALS ENGINEERS, INC.

Stella A. Hardy, P.E. Geotechnical Project Manager RE. Number: 21801 Expires 06/30/2023 shardy@cmenv.com Direct: 775-737-7576 Carolyn J. Jones, EIT Engineering Intern cjones@cmenv.com Direct: 775-737-7573

SAH:CJJ:sah V:\Active\3109\report\Final\Final Geotechnical Site Assessment - 53 Mule Deer Court 01.25.2022.docx

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE AND PROJECT DESCRIPTION	1
2.1 Historical Site Development	1
2.2 Current Site Conditions	
2.3 Project Description	4
3.0 SUBSURFACE EXPLORATION	4
4.0 LABORATORY TESTING	5
5.0 GENERAL SUBSURFACE SOIL PROFILE ENCOUNTERED	6
5.1.1 Uncontrolled Fill (UC)	7
5.1.2 Mixed Alluvium and Alluvial Sediments (Q _{r6})	10
5.1.3 Sedimentary Bedrock (T _{nds})	
5.2 Soil Moisture and Groundwater Conditions	10
6.0 DISCUSSION	
6.1 General Information	
6.2 Construction Concerns	
7.0 DESIGN RECOMMENDATIONS	
7.1 Seismic Design Parameters	
7.1 Seisinic Design Farameters	
7.2.1 Settlement	
7.2.2 Footings Adjacent to slopes	
7.3 Static Lateral Earth Pressures	
7.4 Slope Stability	18
7.4.1 Global Stability	18
8.0 CONSTRUCTION RECOMMENDATIONS	19
8.1 Site Preparation	19
8.1.1 Site Clearing	19
8.1.2 Subgrade Preparation	
8.2 Remedial Earthwork	
8.2.1 Uncontrolled Fill Remedial Earthwork	
8.2.2 Expansive Clay Soil Remedial Earthwork	
 8.3 Structural Fill Guidelines 8.4 Trenching and Confined Excavations 	23
8.5 Concrete Slabs	
8.6 Site Drainage and Moisture Migration Management	
8.6.1 Drainage Options Retaining Structures	.26
8.7 Concrete Corrosion Consideration	27
9.0 CONSTRUCTION OBSERVATION AND TESTING SERVICES	
10.0 LIMITATIONS	

FIGURES

Figure 1: General Project Vicinity	1
Figure 2: Washoe County GIS Contours (N.T.S)	
Figure 3: Typical Footing Embedment Diagram Adjacent to Slopes	16
Figure 4: Typical Uncontrolled Fill Remedial Earthwork Schematic	20
Figure 5: Vertical and Lateral Offset from Potentially Expansive Soil Schematic	22
Figure 6: Option 1 Typical Basement Retaining Wall Back-of-Wall Drainage Schematic	27
Figure 7: Option 2 Typical Non-Basement Retaining Wall Back-of-Wall Drainage Schematic	27

TABLES

Table 1: General Soil Profile Description Summary	6
Table 2: General Definitions and Specifications for Report Recommendations	
Table 3: General Geotechnical Considerations and Overview Summary	12
Table 4: Seismic Design Parameters (2018 IBC)	13
Table 5: Foundation Design Parameters	14
Table 6: Static Lateral Earth Pressures	17
Table 7: Slope Stability Strength Parameters	18
Table 8: Slope Stability Factors of Safety	18
Table 9: Minimum Vertical and Lateral Offset from Potentially Expansive Soil	21
Table 10: Guideline Specification for Imported Structural Fill	23
Table 11: Maximum Allowable Temporary Slopes	24
Table 12: General Guideline Requirements for Concrete Subject to Sulfate Exposure	
Table 13: Soil Sulfate Content Results	28

PHOTOS

Photograph 1:TP-1 Sidewall (0.0-5.0)	7
Photograph 2:TP-1 Sidewall (0.0-10.0)	
Photograph 3: TP-2 Sidewall (0.0-5.0)	
Photograph 4: TP-2 Sidewall (5.0-10.0)	
Photograph 5: TP-3 Sidewall (0.0-5.0)	3
Photograph 6: TP-3 Sidewall (5.0-12.0)	3
Photograph 7:TP-4 Sidewall (0.0-5.0).	9
Photograph 8:TP-4 Sidewall (5.0-10.0)	9
Photograph 9: TP-5 Sidewall (0.0-5.0)	
Photograph 10: TP-5 Sidewall (5.0-10.0)	

APPENDICES

APPENDIX A

Plate A-1 – Exploration Location Map Plate A-2 – Test Pit Logs Plate A-3 – Soil Classification Chart Plate A-4 – Rock Classification Chart

APPENDIX B

Plate B-1 – Grain Size Analysis Plate B-2 – Atterberg Limits Plate B-3 – Expansion Index Results Plate B-4 – Moisture Density Curve Plate B-5 – Direct Shear Results Soil Chemistry Test Results

APPENDIX C

Seismic Design Parameters

APPENDIX D

Global Stability Analysis

GEOTECHNICAL SITE ASSESSMENT 53 Mule Deer Court Single-Family Residence APN 038-730-39 Reno, Nevada, 89523

1.0 INTRODUCTION

Presented herein are the results of Construction Materials Engineers, Inc. (CME) geotechnical site assessment, laboratory testing program, and associated geotechnical recommendations for the proposed residence to be constructed at 53 Mule Deer Court, in Reno, Washoe County, Nevada. The general area covered by this report is included as Plate A-1 (Exploration Location Map) in Appendix A. The general project vicinity is presented as Figure 1 below.

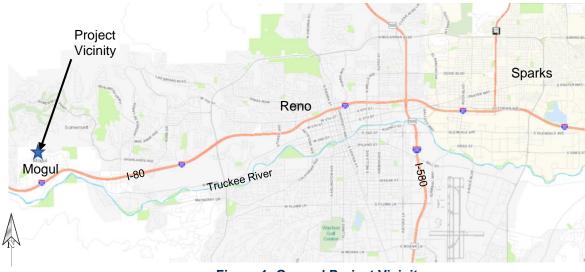


Figure 1: General Project Vicinity (Reference Base Map <u>Washoe Regional Mapping System (washoecounty.us)</u>)

Details of the project described herein serve as the basis for our project understanding and provide the foundation for the geotechnical engineering analysis performed. Recommendations presented in this report are based on surface/subsurface conditions encountered during our field exploration and on details of the proposed project.

2.0 SITE AND PROJECT DESCRIPTION

2.1 HISTORICAL SITE DEVELOPMENT

Based on historical aerial mapping and conversations with the owner, the project site was previously developed as a single-family residence with basement and onsite sewage disposal field. Based a review of Google Earth historical imagery the residence was constructed after 1990 and subsequently burnt down between 1999 and 2002. In 2014 the historic building pad was filled with approximately 10 to 15 feet of uncontrolled fill by the owner of the westmost neighboring parcel (i.e., owner at the time earthwork was performed). The abandoned residence foundation, stem-walls and all below grade improvements were left in place and buried beneath the uncontrolled fill. Historical aerial images of the site are presented on the following page.

Historical Aerial Image Exhibit 1: Circa 2004 (Google Earth)

Historical Aerial Image Exhibit 2: Circa 2016 (Google Earth)

2.2 CURRENT SITE CONDITIONS

The subject site consists of an irregular-shaped 5.7-acre parcel (Washoe County Assessor Parcel Number (APN) 038-730-39) which is bounded to the northeast, northwest, and south by privately owned land, and the southwest by Mule Deer Court. A canal forms the northeast boundary of the parcel. A canyon which trends southeast to northwest, bisects the site. The southwest quadrant of the site is currently terraced with the western portion of the pad approximately 10 to 20 feet higher than the eastern portion. The upper terrace pad elevation is between an elevation of 4,852 and 4,856 and is about 70 feet higher in elevation than the base of the canyon flowline. At the base of the canyon is a 40-foot-wide drainage easement (refer to Figure 2 below).

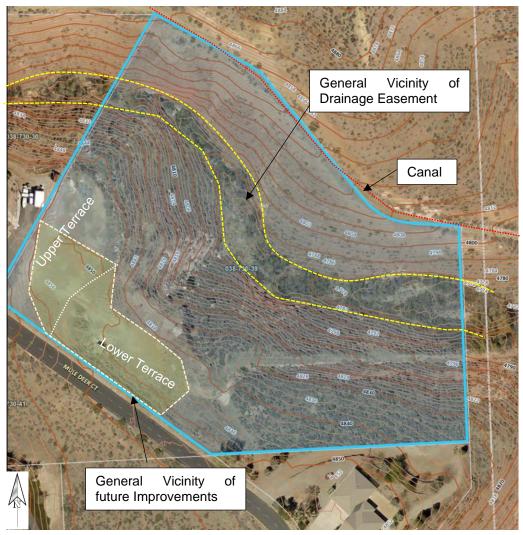


Figure 2: Washoe County GIS Contours (N.T.S) (Reference Base Map <u>Washoe Regional Mapping System (washoecounty.us)</u>)

The northeastern quadrant of the pad is a steeply sloping hillside which forms the northeastern limits of the canyon. Although the parcel is over 5 acres in size, the area of development is generally limited to the southwestern quadrant (refer to area highlighted in yellow on Figure 2 above) due to the existing canyon as the primary site access is via Mule Deer Court. Vegetation across the parcel is sparse consisting of short brush, weeds and grasses.

2.3 PROJECT DESCRIPTION

The proposed project is currently in the conceptual planning phases and the preliminary site layout is presented on Plate A-1. The following serves as our understanding of the proposed site development:

- Construction of a single-family residence. The proposed structure will be wood framed supported on shallow spread footings with raised floor construction or slab on grade construction.
- The structure may be terraced with stepped footings, constructed using a partial or daylight basement, or on a cut/fill pad with an estimated finished pad elevation on the order of 4650 to 4852 (Washoe County GIS Contours from Figure 2).
 - The western limits of the building pad will be located within the upper terrace uncontrolled fill zone requiring remediation. The existing uncontrolled fill may be on the order of 4 to 10 feet thick.
 - The eastern portion of the building pad where the proposed garage and driveway will be located spans the lower terrace area and is generally outside the uncontrolled fill zone. It is anticipated the eastern quadrant of the building pad will be brought up between 4 and 6 feet to create a level building pad.
 - Total differential fill below the building pad is anticipated to be on the order of 5 feet or less with a gradual transition spanning the long axis of the future building.
- The proposed residence will utilize the existing onsite sewage disposal field located on the northwest quadrant of the uncontrolled fill pad on the upper site terrace.
- Appurtenant construction may include associated flatwork, driveway, landscaping, and subsurface utilities.

3.0 SUBSURFACE EXPLORATION

The subsurface field exploration was performed on September 16th, 2022 and included excavation of eight (8) test pits using a Link-Belt 245 X4 excavator equipped with a 48-inch wide, 5-tooth bucket. Test pits depths ranged from 10 to 14 feet below existing ground surface (bgs).

Test pits were backfilled with the equipment available and were not compacted to the standards required for structural fill. During the time of construction, the test pit backfill located within the building or other structure footprints shall be removed and recompacted to at least 90 percent relative compaction.

Soil samples were visually examined and classified during exploration in general accordance with ASTM D2488. Exploration locations (Plate A-1), test pit logs (Plate A-2), Unified Soil Classification Chart (Plate A-3), and Rock Classification Chart (Plate A-4), are attached as Appendix A.

4.0 LABORATORY TESTING

Soil testing performed in CME's laboratory was conducted in general accordance with ASTM Standards. Representative soil types were selected and analyzed to determine index properties and engineering properties. The following laboratory tests were completed as part of this investigation:

- In situ moisture content (ASTM D2216) (Appendix A);
- Grain size distribution (ASTM D6913) (Appendix B); and
- Plasticity index (ASTM D4318) (Appendix B);
- Moisture Density Curve (ASTM 1557) (Appendix B);
- Direct Shear (ASTM D3080) (Appendix B); and
- Expansion Index (ASTM D4829) (Appendix B).

In addition, our firm contracted with an outside laboratory to complete the following analytical testing for the corrosion potential of the site soil:

• Soluble Sulfates (ASTM C1580) (Appendix B)

5.0 GENERAL SUBSURFACE SOIL PROFILE ENCOUNTERED

Based on a review of the *Preliminary Revised Geologic Maps of the Reno Urban Area, Nevada* (Ramelli, et al, 2011), the project area is mapped as several different geologic units. Geologic units consist of alluvial fan deposits and sedimentary bedrock consisting of diatomaceous siltstone, sandstone, and/or mudstone. In general, the subsurface profile appears to be consistent with the mapped geology. Table 1 below summarizes the general soil profile characteristics.

Test Pit ID	General Geologic Profile ⁽²⁾	Depth (ft)	USCS Soil Classification	Permitted For Reuse as Structural Fill	Groundwater	
	TP-1	UC	0.0 – 1.3	Sandy Lean Clay (CL)	0	
18-1		1.3 – 10.0	Silty Sand with Gravel and Cobbles (SM)	0		
TP-2	UC	0.0 - 10.0	0			
		0.0 - 8.0	Clayey Sand with Gravel (SC)	0	1	
TP-3	UC	4.0 - 8.0	Lean Clay with Sand (CL)	0	1	
	Q _{r6}	8.0 - 14.0	Lean Clay with Sand (CL), Sandy Lean Clay (CL)	0		
	UC	0.0 – 5.0	Clayey Sand with Gravel (SC)			
TP-4	Q _{r6}	5.0 - 12.0	Sandy Lean Clay (CL), Clayey Sand with Gravel and Cobbles (SC)	0		
TP-5	UC	0.0 - 1.0	Sandy Lean Clay with Gravel and Cobbles (CL)	0	Not	
		1.0 - 10.0	Clayey Sand with Gravel and Cobbles (SC), Clayey Sand (SC)	0	Encountered or Observed	
TP-6	TDE		0.0 - 10.0	Clayey Sand with Gravel and Cobbles (SC), Clayey Sand (SC)	0	
	O Qr6	10.0 – 11.0	Fat Clay with Sand (CH)	0		
	Q _{r6}	0.0 - 3.0	Clayey Sand (SC)	\otimes		
TP-7		3.0 - 9.5	Fat Clay with Sand (CH), Sandy Lean Clay (CL)	0		
	T _{nds}	9.5 – 10.0	Sedimentary Rock (Bedrock)	0		
TP-8			0.0 - 4.5	Clayey Sand (SC)	0	1
	Q _{r6}	4.5 – 10.0	Fat Clay with Sand (CH), Sandy Lean Clay (CL)	\otimes		
	T _{nds}	10.0 - 12.0	Sedimentary Rock (Bedrock)	0]	

UC – Uncontrolled Fill: Includes soil with substantial occurrence of deleterious materials or debris, refer to Section 5.1.1 (Uncontrolled Fill) for additional information.

Q_{r6} – Pre-Donner Lake Alluvial Fan Deposits: Generally consisting of mixed alluvium and alluvial sediments consisting of clayey sand, sandy lean clay, lean clay with sand, and fat clay with sand. Refer to Section 0 for additional information.

T_{nds} – Diatomaceous Siltstone and Sandstone: Sedimentary bedrock generally characterized as intensely weathered, soft, and intensely fractured.

Not Permitted

NOTES 1.

Soil descriptions are a generalization of the exploration logs; for detailed descriptions, see Appendix A.

V:\Active\3109\report\Final\Final Geotechnical Site Assessment - 53 Mule Deer Court 01.25.2022.docx

5.1.1 UNCONTROLLED FILL (UC)

Uncontrolled fill (UC) was found in five of the eight test pits and is generally localized to the upper terrace of the site. The uncontrolled fill was encountered with varying degrees of thicknesses ranging from 4 feet to greater than 10 feet (refer to Plates A-1 and A-2). The uncontrolled fill contained a substantial amount of manmade debris (rebar, concrete, asphalt, conduits, and remnant foundations) and organics. In addition, the soil observed and tested in our laboratory was moderately plastic with plasticity indices ranging from 16 to 26 (refer to Plate B-2, Appendix B) and is considered potentially expansive.

The depth of the uncontrolled fill was not fully realized within Test Pits TP-1, TP-2, and TP-5 to the depth of exploration (10 feet).

Photograph 1:TP-1 Sidewall (0.0-5.0)

Photograph 2:TP-1 Sidewall (0.0-10.0)

Photograph 3: TP-2 Sidewall (0.0-5.0)

Photograph 4: TP-2 Sidewall (5.0-10.0)

TP-2 contained uncontrolled fill that contained asphalt slabs generally localized within the upper 5.0 feet. The existing underground concrete foundation from the previously constructed residence was also encountered at a depth of 7.0 feet below ground surface (see Photograph 3 and Photograph 4).

Uncontrolled fill thicknesses of up to 8 feet were observed within TP-3 classifying as clayey sand (SC) and lean clay with sand (CL) (refer to the photographs below).

Photograph 5: TP-3 Sidewall (0.0-5.0)

Photograph 6: TP-3 Sidewall (5.0-12.0)

Uncontrolled fill was observed within the upper 5 feet of TP-4 and contained various debris (concrete, wood, etc.) and diatomaceous soil/rock fragments. Native soil was encountered at depths of 5.0 to 10 feet (refer to the photographs on the following page).

Photograph 7:TP-4 Sidewall (0.0-5.0)

Photograph 8:TP-4 Sidewall (5.0-10.0)

TP-5 contained uncontrolled fill with a substantial occurrence of concrete chunks, wood, and a conduit pipe. The existing underground concrete foundation from the previously constructed residence was encountered at a depth of 7.0 feet below ground surface.

Photograph 9: TP-5 Sidewall (0.0-5.0)

Photograph 10: TP-5 Sidewall (5.0-10.0)

5.1.2 MIXED ALLUVIUM AND ALLUVIAL SEDIMENTS (QR6)

Mixed alluvium and alluvial sediments (Q_{r6}) were generally encountered underlying the uncontrolled fill soil horizon and within the lower terrace test pit excavations (TP-6, TP-7, and TP-8). The native soil horizon generally classified as clayey sand (SC), sandy lean clay (CL), lean clay with sand (CL), and fat clay with sand (CH).

5.1.3 SEDIMENTARY BEDROCK (T_{NDS})

Sedimentary bedrock (T_{nds}) was encountered within test pits TP-7 and TP-8 at depths of 9 ½ and 10 feet below ground surface. The sedimentary bedrock appeared to be a mudstone which was intensely weathered and weak.

5.2 SOIL MOISTURE AND GROUNDWATER CONDITIONS

Soil moisture content varied but was generally encountered in a slightly moist to moist condition. Groundwater was not encountered during the subsurface exploration.

Construction planning should include the assumption that groundwater fluctuations may occur due to precipitation, temperature, runoff, or adjacent irrigation. Depending on the season of construction, seepage may be encountered, especially during spring runoff. The contractor should anticipate this condition and be prepared for dewatering during construction.

6.0 DISCUSSION

6.1 GENERAL INFORMATION

The following definitions and standards are applicable for recommendations in this report related to design and construction of the proposed project:

Table 2: General Definitions and Specifications for Report Recommendations					
Definitions Existing Onsite Soil					
Fine Grained Soil	• Soil with more than 40 percent by weight passing the number 200 sieve and a plasticity index less than 15 (PI<15).				
Clay Soil	• For the purposes of this report, clay soil may be defined as any soil having more than 15 percent by weight passing the number 200 sieve and a plasticity index greater than or equa to 15 (Pl≥15).				
Granular Soil	 Soil not meeting the requirement for a fine-grained or clay soil with: A particle size of 4-inches or less, Less than 30 percent by weight retained on the ¾-inch sieve; Less than 30 percent by weight passing the No. 200 sieve; Plasticity index less than 15 (PI<15). 				
Uncontrolled Fill	 Soil/material placed and/or compacted but not observed, monitored, tested, or documented by a licensed materials test engineering firm. For the purposes of this report includes zones of deleterious materials or debris located within the uncontrolled fill soil. Uncontrolled fill is not suitable for reuse as excavated. Screening and/or selective grading may be required to remove concrete, asphalt, organic material, fabric, and/or other manmade debris. 				
Definitions for M	ass Grading and Site Preparation				
Structural Fill	 Soil generated from onsite grading may be reused as structural fill provided it meets the requirements of a granular soil and is free of organics or deleterious materials. Structural fill is the supporting soil placed in densified lifts below foundations, concrete slabs-on-grade, pavements, or any structural element that derives support from the underlying sub-soils material. Imported structural fill shall meet the requirements in Section 8.3. 				
Structural Areas	Includes all areas that will be used for the support of concrete slabs, flatwork, foundations, pavements, or other structures deriving support from the underlying soil.				
Subgrade	 The elevation directly below the aggregate base layer for both concrete slabs-on-grade and pavements; Bottom of excavation for foundations bottomed on native soil materials and structural fill. The native soil surface elevation below structural fill. 				
Relative Compaction	• The dry density of soil in the field expressed as a percentage of the density of the soil after densification during placement. Relative compaction shall be in accordance with ASTM D1557.				
Standard Specifications	• Work shall be performed in general conformance to the "Orange Book", Standard Specifications for Public Works Construction, 2012, Revision 8 (SSPWC, 2012).				

6.2 CONSTRUCTION CONCERNS

Based on the results of our field and laboratory studies, the proposed project as described in this report may be constructed as currently proposed. Table 3 (General Geotechnical Considerations and Overview Summary) provides a general summary of the construction and design considerations as they pertain to the project. Geotechnical recommendations for design and construction of the project are included as Section 7.0 and Section 8.0.

Table 3: General Geotechnical Considerations and Overview Summary					
Subject	Geotechnical Consideration				
Groundwater/	 Groundwater was not encountered or observed during the subsurface exploration. Groundwater is not anticipated to affect the proposed construction. Depending 				
Seasonal Runoff	on the season of construction, seepage may be encountered, especially during spring runoff. Dewatering and stormwater management during construction shall be the responsibility of the contractor.				
Reuse of Onsite Materials	• A majority of the soil encountered on-site does not meet the requirements of structural fill. Imported earthen materials will be required for construction.				
	• The majority of the onsite soil encountered (both native and uncontrolled fill) during the current exploration is considered potentially expansive (EI>20, PI>15) and is not suitable for reuse as structural fill.				
Potentially Expansive Soil	• Footings and flatwork improvements for the proposed single-family residence bottomed on potentially expansive soil (refer to Section 5.0) may be subject to deformations due to volumetric changes (i.e., shrink/swell) of the clay soil with fluctuations in moisture content. Consequently, remedial earthwork is recommended (refer to Section 8.2).				
	• Uncontrolled fill was encountered in the upper 4 to 10 feet of the proposed building pad (refer to Plate A-1). Thicker zones of uncontrolled fill may be present within the proposed improvement area especially in the northwestern quadrant of the subject site and will need to be determined at the time of construction.				
Uncontrolled Fill	 Uncontrolled fill observed within the excavations was riddled with random manmade debris and organics (refer to Plate A-2). In addition, the material tested is considered potentially expansive (PI>15, EI>20) so reuse of this material in structural areas is not permitted. 				
	• Remedial earthwork will be required where uncontrolled fill soil is encountered which will include complete removal and replacement with densified structural fill. Refer to Section 8.2.1 (Uncontrolled Fill Remedial Earthwork)				
General Information	• This report shall be reviewed by the design team and contractor in its entirety.				

7.0 DESIGN RECOMMENDATIONS

7.1 SEISMIC DESIGN PARAMETERS

Seismic design parameters are based on site-specific estimates of spectral response ground acceleration as designated in the 2018 IBC. Based on our professional experience, a Site Class C is recommended for project design. A copy of the ASCE 7 Hazards Report is provided in Appendix C. A summary of seismic design parameters are provided in Table 4 (Seismic Design Parameters (2018 IBC)).

Table 4: Seismic Design Parameters (2018 IBC)			
Approx	imate Latitude of Site	39.52099°	
Approx	imate Longitude of Site	-119.9335°	
Site Cla	ass Selected for this Site	С	
Risk Ca	ategory	II	
Ss	Spectral Response Acceleration at Short Period (0.2 sec.)	1.532	
S ₁	Spectral Response Acceleration at 1-second Period	0.524	
Fa	Site amplification factor at Short Period (0.2 sec.)	1.200	
Fv	Site amplification factor at 1-second Period	1.476	
SDS	Design Spectral Response Acceleration at Short Period (0.2 sec.)	1.225	
S _{D1}	Design Spectral Response Acceleration at 1-second Period	0.516	
S _{MS}	Site-modified spectral acceleration value at Short Period (0.2 sec.)	1.838	
S _{M1}	Site-modified spectral acceleration value at 1-second Period	0.774	
TL	Long-period transition period in seconds	6	
PGA	MCE _G peak ground acceleration	0.646	
PGA _M	Site modified peak ground acceleration	0.775	
NOTES: 1. See requirements for Site Specific Ground Motions in Section 11.4.8 of ASCE 7.			

7.2 FOUNDATION DESIGN

Based on the anticipated foundation loading, structure type, and soil conditions encountered during the subsurface exploration, foundation design parameters presented in Table 5 (Foundation Design Parameters) can be utilized for the design of shallow spread footings provided the recommendations contained in this report have been adhered to.

	Table 5: Foundation Design Parameters			
	Allowable Bearing Pressures (psf) (1,2,3,4)			
Footings bottomed at least 2 feet ⁽⁴⁾ below the proposed finished grade elevation on structural fill				
	Allowable Friction Coefficient ⁽⁵⁾			
Bet	ween foundation bottom and supporting soil consisting of structural fill	0.42		
	Allowable Passive Soil Pressure (psf) (1,6)			
Bac	kfill soil consisting of properly compacted structural fill	300 ⁽⁵⁾		
 NOTES: (psf)-Pounds per square foot 2. The allowable bearing pressure may be increased by one-third for total loading conditions including wind and seismic forces (2018 IBC). The allowable bearing pressure is a net value; therefore, the weight of the foundation which extends below grade and backfill may be neglected when computing dead loads. The allowable bearing pressure includes a FOS of 3.0 against bearing failure. 3. Based on a minimum isolated and continuous foundation width of 1.25 feet. 4. For frost protection, footings should be bottomed at least 2 feet below adjacent exterior grade. 5. The passive earth pressure should be used as a triangular distribution. The frictional resistance and passive earth pressure provided in the table are "allowable" and may be used in combination without reduction as a FOS of 1.5 is included. 6. The passive resistance should be neglected within the frost zone. Design values are based on footings backfilled with properly compacted structural fill. 				

Spread footings shall be proportioned and located to maintain stability (e.g., bearing, overturning, sliding, uplift, eccentricity). Eccentric loading, where required, shall be evaluated for allowable bearing pressures.

Lateral loads (such as wind or seismic) may be resisted by passive soil pressure and friction at the bottom of the footing. Overturning moments and uplift loading can be resisted by the weight of the foundation, weight of the structure, and any soil overlying the foundation. A unit weight of 125 pounds per cubic foot may be assumed for backfill soil consisting of properly densified structural fill.

It is recommended that footing excavations be observed by the project soil engineer prior to placing concrete reinforcing steel to confirm the subsurface conditions are similar to those described in this report. Field density testing and continuous observation during earthwork operations will be required if footings are bottomed on densified structural fill.

7.2.1 SETTLEMENT

Due to the presence of both the proposed structural fill and existing alluvial sediments as encountered during the current exploration, the primary modes of settlement response expected are summarized below:

Immediate Settlement (Short-Term)	Settlement additional stress/load. This settlement component is typically relevant to unsaturat			
Consolidation	Consolidation is the gradual rearrangement of soil particles with the reduction of porewater pressure. In order for consolidation to occur, the additional stress/load must increase pore water pressure in the soil (i.e., the soil must be fully or nearly fully saturated). Consolidation is typically relevant in fine-grained soil similar to the clay sediments encountered during the current exploration.			
(Long-Term)	Native clay soils were encountered in test pit TP-6, TP-7 and TP-8. Based on empirical correlations and our general understanding of the geologic features at the site, this material is significantly overconsolidated and the anticipated settlement response due to anticipated loading is less than ½ inch.			
Differential Settlement	To limit the potential for differential settlement, differential fill thicknesses across the structure bottom of foundation elevation shall be less than 5 feet, in addition no sharp transitions are recommended. If fill thicknesses beneath the proposed building footprint differ more than 5-feet, the thinnest fill side may need to be overcut such that the resultant differential fill thickness gradually transitions across the pad and the total differential is less than 5-feet or less.			
Total Estimated Settlement	Based on the findings of our investigation, estimated total settlements will be to be on the order of 1-inch or less with differential settlement on the order of ½ of the total estimated settlement.			

7.2.2 FOOTINGS ADJACENT TO SLOPES

The proposed residence and associated site improvements are bounded to the north and northeast by the edge of a deep channel/canyon. A detached retaining wall will be located adjacent to the slope. All footings will need to maintain a minimum embedment depth of 2 feet. For sloping backfill conditions on the toe side of the foundation, the minimum embedment shall be maintained for a lateral distance of 5 feet which may require deepening of foundations located in close proximity to the slope face. Refer to Figure 3 (on the following page) for a typical embedment diagram.

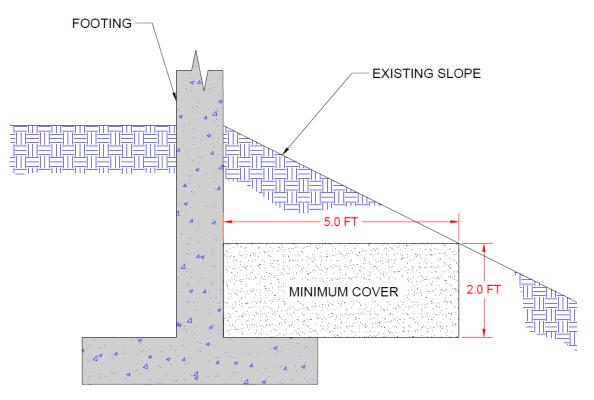


Figure 3: Typical Footing Embedment Diagram Adjacent to Slopes

7.3 STATIC LATERAL EARTH PRESSURES

Static lateral earth pressures presented in this section are based on the following assumptions:

- Retained backfill will have a level backslope and consist of structural fill;
- Retained backfill will extend a minimum lateral distance behind the wall equal to the total height of the retained soil;
- Back-of-wall drainage will be incorporated for retained wall heights greater than 3 feet.

Static lateral earth pressures on the retaining wall are dependent on the relative rigidity, allowable movement of the retaining structure, strength properties of the backfill soil, and drainage conditions behind the retaining wall. The lateral earth pressure is strongly dependent on the lateral deformations which occur in the soil.

A restrained retaining wall (i.e., displacement not permitted) will experience higher lateral earth pressures than a retaining wall that is free to move (cantilever conditions). The restrained retaining wall lateral earth pressure is based on the at-rest soil coefficient (K_0), and lateral earth pressure values for the retaining wall that is free to rotate with the ability to deflect at the top (wall movement greater than 0.001H for cohesionless soils and greater than 0.01H for cohesive soils) are based on active soil coefficient (K_a). Static lateral earth pressure values are presented in Table 6 (Static Lateral Earth Pressures).

Table 6: Static Lateral Earth Pressures					
Earth Pressure Condition B		Backfill Slope	Earth Pressure Coefficient		Equivalent Fluid Density (psf) ^(1,2)
	Active (Pa)	Level		0.28 (Ka)	35
At-Rest (P _o) Leve		Level		0.44 (Ko)	55
	Passive (P _p)	Level		2.4 (Kp)	300
NOTES: 1. Pounds per square foot per foot of depth 2. Assuming maximum unit weight of 125 pcf and a soi friction angle of at least 34 degrees.		the 7. erial 8. ined 9. al to 10.	away from the retained s of about 0.01 H, where design of active earth p For passive earth press horizontally to mobilize Does not include surcha Assumes no dynamic lo Ignore passive pressure	sure to develop, wall must move resistance. arge loading.	
5.	Passive pressure includes a	a factor of safety of 1.5.			

Subterranean structures and short retaining walls, including foundations, should be designed to resist the lateral earth pressure exerted by the retained soil plus any additional lateral force that will be applied to the wall due to surcharge loads placed at or near the wall.

Over-compaction of retained backfill shall be avoided as it will result in increased lateral forces exerted on the wall by the soil. Heavy equipment should not be used for placing and/or compacting backfill adjacent to the retaining wall and should be kept a minimum of three feet or at a distance determined by a 1H:1V slope away from the base of the wall, whichever is greater.

7.4 SLOPE STABILITY

7.4.1 GLOBAL STABILITY

A global stability analysis was performed to assess the global stability of the existing slope for both static and seismic conditions. Based on existing laboratory testing available, empirical correlations, and professional engineering judgement, Table 7 (Slope Stability Strength Parameters) presents general soil strength parameters used in slope stability analyses.

Table 7: Slope Stability Strength Parameters						
Material	Moist Unit Weight (pcf)	Estimated Effective Friction Angle (°)	Estimated Effective Cohesion (psf)			
Imported Structural Fill	125	34	100			
Native Overburden Soil ⁽¹⁾ (SC and CL)	126.5	27.6	519			
Sedimentary Bedrock (Observed in TP-7 and TP-8 @ 9.5-10 feet)	120.0	30	1000			

An average design ground acceleration at zero seconds for a 2% probability occurrence in 50-years (i.e., 2,475-year return period) for a Site Class C soil (PGA_M) is 0.775 g. For our pseudo-static (i.e., seismic) slope stability analyses, we assumed slope deformations on the order of 4- to 6-inches are acceptable. Therefore, in accordance with Section 4.2 of the U.S. Department of Transportation Publication No. FHWA-NHI-00-043 published March 2001, a horizontal seismic design acceleration coefficient (k_h) of 0.387 was used for slope stability analyses.

Table 8 presents modeled slope under static and pseudo-static analyses.

Table 8: Slope Stability Factors of Safety					
	Slope Stability Factor of Safety				
Load Case	Minimum Design FOS	Calculated FOS			
Static slope stability	1.50	2.1			
Pseudo-static slope stability	1.10	1.2			
 NOTES: The civil designer shall confirm actual project cross sections are consistent with slope stability model cross sections presented in Appendix E. Static Minimum Recommended Slope Stability Factor of Safety is consistent with AASHTO LRFD Bridge Design Specifications, 8th Edition Section 11.6.2.3. Pseudo-static Minimum Recommended Slope Stability Factor of Safety is based on the FHWA LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations Reference Manual, Section 6.2.2. 					

Global stability of the modeled slope yielded an acceptable factor of safety for both static and pseudo-static condition. Slope stability models analyzed with satisfactory factors of safety are presented in Appendix D.

8.0 CONSTRUCTION RECOMMENDATIONS

8.1 SITE PREPARATION

8.1.1 SITE CLEARING

J and ng	Surface vegetation, duff, and topsoil shall be stripped and grubbed prior to initiating fill placement or construction activities. Surface vegetation shall be disposed of outside the construction limits of the site.
Stripping and Grubbing	Topsoil shall be stockpiled onsite for use in non-structural landscape areas. Stripped and grubbed material shall not be incorporated into or permitted for placement as structural fill.
Sti	Stripping and grubbing depths on the order of 4 to 6 inches may be required and may extend deeper where concentrated areas of brush or shrubs are located.
Vegetative Root Balls	Root balls located at the base of mature brush or shrubs shall be completely removed. Voids resulting from grubbing shall be cleaned of loose material, widened to permit access to compaction equipment, and backfilled with properly compacted structural fill as described in Section 8.3.

8.1.2 SUBGRADE PREPARATION

sture	mo be	arification and moisture conditioning including uniform mixing of soils to achieve recommended isture contents will be required. It is recommended that the moisture content of the in-situ soils determined during construction to evaluate if moisture conditioning is required. Moisture additioning and scarification depth will be dependent on the soil type:
and Moi tioning	•	Granular soils shall be scarified to a minimum depth of 12 inches and moisture conditioned, if required, prior to densification. It is recommended that these soils have moisture contents of plus or minus 2 percent of optimum moisture (ASTM D1557) prior to densification.
Scarification and Moisture Conditioning	•	Clay or fine-grained soils shall be scarified to a minimum depth of 12 inches, and moisture conditioned to at least 3 percent over optimum (ASTM D1557), prior to densification. It is mandatory that this moisture content be maintained by periodic surface wetting, or other methods, until the surface is covered by at least one lift of fill. Moisture contents above 3 percent of optimum moisture will be acceptable if the soil horizon maintains its stability when subjected to construction equipment loads and density can be achieved in subsequent structural fill lifts.

Compaction	Prior to placement of structural fill, subgrade soils shall be scarified, moisture conditioned, and densified to at least 90 percent relative compaction (ASTM D1557). Uniform mixing of the site soil to achieve recommended soil moisture contents may be required. It is recommended that the moisture content of the in-situ soil be determined during construction to evaluate the extent of moisture conditioning required. After the densification process, a firm, stable surface shall be produced.		
	De	nsification of the subgrade soils will be dependent on soil type:	
n and	Granular soils are not considered cohesive and the particles generally require shaking or vibratory action (i.e., smooth drum roller) for densification.		
Densification	•	Clay soil is considered cohesive and particles are best densified using high impact ram or sheepsfoot roller compactors.	
Densi	•	To determine if oversaturated subgrade materials have a potential for pumping, proof-rolling with heavy rubber-tired construction equipment such as a fully loaded water truck is recommended. Pumping or soft areas shall be over excavated and replaced with densified structural fill.	

8.2 REMEDIAL EARTHWORK

8.2.1 UNCONTROLLED FILL REMEDIAL EARTHWORK

As previously noted, the uncontrolled fill is riddled with debris and is considered potentially expansive. Uncontrolled fill will be located below a majority of the proposed structural improvements (e.g., residential structure foundations and slab, flatwork, pavement, retaining wall foundations). The general vicinity and estimated thicknesses of the uncontrolled fill is included on Plate A-1; however, the actual limits of the uncontrolled fill will need to be determined at the time of construction during mass grading and foundation grade preparation.

Uncontrolled fill shall be completely removed below the improvement area replaced with densified structural fill. At a minimum CME recommends the removal shall extend a lateral distance equal to a minimum of 5 feet beyond the exterior limits of the structure; or a distance approximated by a 1H: 1V project downward and outward from the outside edge of the foundation [i.e., "Zone of Influence"], whichever is greater (refer to Figure 4). This material shall be hauled offsite or placed in non-structural areas.

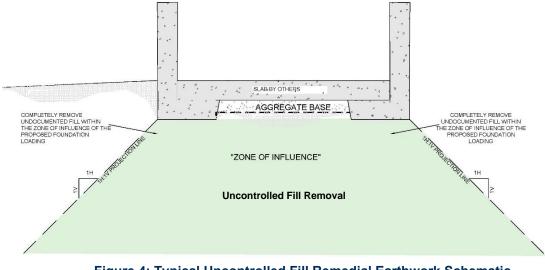


Figure 4: Typical Uncontrolled Fill Remedial Earthwork Schematic

8.2.2 EXPANSIVE CLAY SOIL REMEDIAL EARTHWORK

The uppermost overburden soils located below the uncontrolled fill consist of potentially expansive material classifying as lean clay with gravel and cobbles (CL), moderately plastic clayey sand (SC), lean clay with sand (CL), and fat clay (CH). The need for remedial earthwork of this soil horizon will be dependent on the proximity of the proposed structural element to this potentially expansive soil horizon. To mitigate the potential for deformation of structural elements due to volumetric changes (i.e., shrink/swell) of the underlying soil, a vertical and lateral offset is recommended. Remedial earthwork may require overexcavation and replacement with structural fill to achieve the recommended vertical and lateral offsets and will be dependent on the final site grading.

The plasticity indices of the onsite material tested in our laboratory generally ranged from 24 to 27 although variations may exist. Table 9 (Minimum Vertical and Lateral Offset from Potentially Expansive Soil) summarizes the recommended minimum vertical and lateral offsets for pavement structural sections and the building structure footprint. Based on the soil tested in our laboratory, we expect the majority of the soil will comply with a PI range of "20-30".

Table 9: Minimum Vertical and Lateral Offset from Potentially Expansive Soil				
	Minimum Vertical and Lateral Offsets for Various Plasticity Index (PI) Ranges			
Typical Structural Area ^{1,2,3}	15 ⋅	·20	20-30	
	Vertical Thickness (ft)	Lateral Offset (ft)	Vertical Thickness (ft)	Lateral Offset (ft)
Flatwork and Pavement (i.e., sidewalk and parking areas)	0.5	0.5	1.0	1.0
Building Structure Footprint (Includes perimeter foundations, interior column footings, and interior concrete slabs)	1.5	1.5	2.5	2.5
 NOTES: 1. The overexcavation shall encompass the entire structure area footprint and extend laterally beyond the structural element a distance equal to the minimum lateral offset presented for each structural area. 2. For pavement, flatwork, and interior concrete slabs, the vertical offsets shall begin at the base of the aggregate base and lateral offset shall be from the exterior edge of the pavement structural section. 3. For foundations the vertical and lateral offsets are in reference to the exterior perimeter of the foundation. 4. Where questionable soil is encountered, the project geotechnical engineer shall be notified. 				

5. If plasticity indices outside of this range are encountered, please notify this office for alternative recommendations.

A typical schematic showing the minimum vertical and lateral offset based on the proposed structure type is presented as

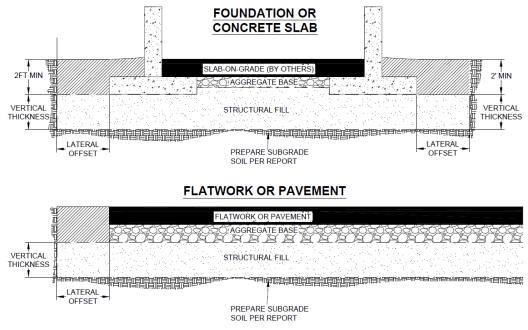


Figure 5: Vertical and Lateral Offset from Potentially Expansive Soil Schematic

8.3 STRUCTURAL FILL GUIDELINES

Structural fill is defined as supporting soil placed below foundations, concrete slabs-on-grade, pavements, or any structural element that derives support from the underlying sub-soil. Structural fill derived from on-site shall meet the requirements for a granular soil (refer to Section 6.1). Based on laboratory test results, majority of the soil on-site does not meet the requirements of structural fill. Imported structural fill will be required.

Table 10: Guideline Specification for Imported Structural Fill **Sieve Size** Percent by Dry Weight Passing 4-inches 100 70 - 100 ³⁄₄ inch 15 – 65 No. 40 Percent Passing No. 200 **Maximum Liquid Limit Maximum Plastic Index** 5 - 1545 14 16 - 3540 10 **R-Value (Traffic Areas Only)** 30 Water Soluble Sulfate (SO₄) in Soil (%) by Mass < 0.2

Imported structural fill shall be free of debris, vegetation, and organics, meeting the requirements provided in Table 10 (Guideline Specification for Imported Structural Fill).

NOTES:

1. R-Value is required for materials placed in roadways or areas to receive vehicular traffic only. Not required for building foundations or ancillary improvements outside of traffic areas.

2. Water Soluble Sulfate required where structural fill will be located adjacent to, above, or in direct contact with concrete elements. Please contact the project geotechnical engineer for additional guidance.

Structural fill shall be placed in maximum 8-inch thick (loose) level lifts or layers and densified to at least 90 percent relative compaction. The required moisture content of the soils, prior to densification, shall range between plus or minus 3 percent of optimum moisture, as determined by moisture-density relationship test results (ASTM D1557). Moisture contents greater than 3 percent of optimum moisture are acceptable if the soil lift is stable and required relative compaction can be attained in the soil lift and succeeding soil lifts. Grading should not be performed with frozen soils or on frozen soils.

8.4 TRENCHING AND CONFINED EXCAVATIONS

All excavations regardless of depth should be evaluated to check the stability prior to occupation by construction personnel. Shoring or sloping of trench walls may be required to protect construction personnel and provide temporary stability. In areas where temporary confined excavations may be unstable, trench boxes may be used to provide safe ingress and egress for construction personnel.

Excavations should comply with current OSHA safety requirements (Federal Register 29 CFR, Part 1926). Rock/soil is classified as Stable Rock, Type A, B or C, which requires different temporary excavation cut slope gradients. Maximum allowable slopes for excavations less than 20 feet deep are presented in Table 11 (Maximum Allowable Temporary Slopes). Ultimately, it is the contractor's responsibility to determine soil type in the field during trenching activities. Based on the soil conditions encountered during the subsurface exploration, it is anticipated that the trench excavations will comply with Type B or C conditions.

Table 11: Maximum Allowable Temporary Slopes			
Soil or Rock Type	Type Maximum Allowable Slopes ¹ for Excavations (< 20 Feet) ²		
Stable Rock	Vertical	90°	
Туре А	3H:4V	53°	
Туре В	1H:1V	45°	
Туре С	3H:2V	34°	
NOTES: 1. Angles expressed in degrees from the horizontal and have been rounded off. 2. Sloping or benching for excavations greater than 20 feet deep shall be designed by a registered professional engineer. 3. For detailed description of the soil types outlined above visit the US Department of Labor Safety and Health Topics			

website at: https://www.osha.gov/SLTC/trenchingexcavation/construction.html

Trench excavations should be protected from surface water/runoff. Temporary drainage swales should be excavated to divert surface flows into a collection area away from the open excavation. If warranted, dewatering of pipe trench excavations can be accomplished by use of a temporary dewatering system.

If subsurface water conditions differ from those encountered during our subsurface exploration, the geotechnical engineer should be notified immediately.

8.5 CONCRETE SLABS

All interior concrete slabs and flatwork shall be directly underlain by aggregate base. The minimum thickness of base material shall comply with the following:

Structure Type	Aggregate Base Minimum Thickness (in)
Curb and Gutter	6.0
Exterior Sidewalks and Slabs	4.0
Interior Structure Slabs	6.0

Subgrade soil below the aggregate base and the aggregate base shall be prepared in accordance with the recommendations of this report.

The contractor should submit a concrete mix design to the owner at least 10 working days prior to construction for approval. Concrete mix proportions and construction techniques, including the addition of excess water and improper curing, can adversely affect the finished quality of the concrete resulting in cracking, curling and spalling of slabs. We recommend that all placement and curing be performed in accordance with procedures outlined by the American Concrete Institute. Special considerations should be given to concrete placed and cured during hot or cold weather conditions. Proper control joints and reinforcing should be provided to minimize any damage resulting from shrinkage.

8.6 SITE DRAINAGE AND MOISTURE MIGRATION MANAGEMENT

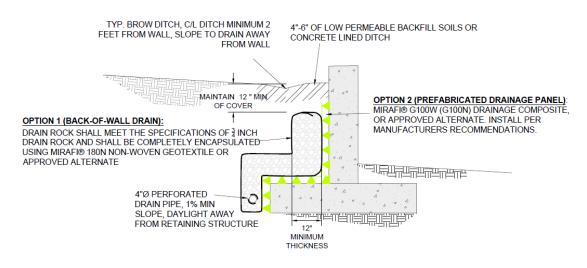
Site Drainage	The project site will be subjected to seasonal runoff. Adequate surface drainage shall be constructed and maintained to convey the water away proposed structures. The permanent finished slope grade away from the structure should be at least 5 percent for a minimum distance of 10 feet away from the building. The slope gradient can be reduced to 2 percent for impervious surfaces, such as concrete slabs-on-grade and pavement, constructed adjacent to the building. It is recommended that all runoff is collected within permanent drainage paths away from the structure to convey water off the property.
Crawl Space	Crawlspace moisture is commonly associated with raised floor construction. Introduction of this moisture can be due to several sources: excessive landscape irrigation, poor site drainage, excessive precipitation, or leakage from other adjacent water sources (pools, ponds, irrigation lines, water features, etc.). Consequently, it is common for water to seep into fill material, perch on the native or compacted soils, travel along the surface of the native or compacted soils, and daylight where the cut/fill line is exposed.
	The civil designer shall consider the potential for moisture migration into the crawl space and provide site grading and drainage in accordance with local standard of practice. Soil exposed within the crawl space shall be completely covered with a moisture barrier (visqueen sheeting) and properly maintained to prohibit any moisture penetration from the subgrade soils.
Concrete	The transmission of moisture to the base of the slab can occur through two physical processes: water vapor transmission and/or capillary action of the underlying soils. Water vapor can be transmitted through the slab and the transmission rate depends on the difference in the water vapor pressure between the air voids in the slab and the air above the slab. Moisture vapor migrating through the slab can cause the debonding and discoloration of tile, linoleum, or other products placed directly on the concrete slab.
Slab-on- Grade	For heated facilities and where sensitive floor coverings or equipment are planned, as noted in Section 1907 (Minimum Slab Provisions) of the 2018 IBC, a polyethylene vapor retarder is recommended for slab-on-grade construction ¹ . The vapor retarder system shall conform to ASTM E1745. A Class A (ASTME-1745) vapor retarder is recommended for project design (such as a 15-mil Stego Wrap or approved alternate). The vapor retarder may be placed between the base course and subgrade (ASTM E1643 ²).

² Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs

¹ When a vapor retarder is required, a capillary break shall be installed.

Retaining Walls and Stem-walls	The design values provided in Section 7.3 (Static Lateral Earth Pressures) assumes that proper drainage measures have been incorporated in the design to prevent the buildup of hydrostatic pressure within the retained backfill. Retained backfill drainage systems are generally recommended in semi-arid areas for wall heights greater than 3 feet. Drainage options commonly include weep holes, back-of-wall/subdrain (i.e., perforated pipe with drain rock), and/or pre-manufactured drainage composites. The method of retained backfill drainage will be dependent on the site layout, wall height, and wall type.
	Stem-walls constructed for this project with retained heights of less than 3 feet will not require a retained backfill drainage system provided the backfill is compacted to at least 90 percent relative compaction and the recommendations for site drainage are adhered to (refer to Section 8.6.1Drainage Options Retaining Structures).

8.6.1 DRAINAGE OPTIONS RETAINING STRUCTURES


Exterior retaining structures shall include back-of-wall drainage to limit the potential for buildup of hydrostatic pressures. Several back-of-wall drainage designs are available to the site civil and structural designer.

Design options for retaining wall drainage are presented below:

- The most common method for drainage of retaining walls is the installation of a back-of-wall drain (i.e., French Drain), this method of drainage is typically used where weep holes cannot be effectively used or where drainage through the face of the structure is not feasible.
- Alternatively, a pre-manufactured geocomposite drain or drainage panel such as Mirafi[®] G100W or G100N, or approved equal may be considered. This material shall be installed in accordance with the manufacturer's recommendations. Typically, a drainage pipe and drainage media is required at the base of the installation. Installation recommendations vary by manufacturer.
- If drainage can be obtained through the front of the retaining wall (e.g., exterior retaining structures), weep holes could be installed near the base of the retaining wall. Weep hole sizing and spacing is dependent on the amount of drainage anticipated behind the retaining wall. A filter cover shall cover the weep holes to prevent piping and loss of backfill material.

Typical back-of-wall drainage options for retaining structures are included as Figure 6 and Figure 7 below.

CME CONSTRUCTION MATERIALS ENGINEERS, INC.

V:\Active\3109\report\Final\Final Geotechnical Site Assessment - 53 Mule Deer Court 01.25.2022.docx

Figure 6: Option 1 Typical Basement Retaining Wall Back-of-Wall Drainage Schematic

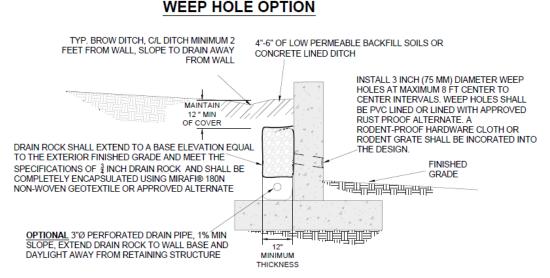


Figure 7: Option 2 Typical Non-Basement Retaining Wall Back-of-Wall Drainage Schematic

8.7 CONCRETE CORROSION CONSIDERATION

Many external sources can affect the potential for sulfate attack against concrete ranging from soil type, marine/wetland environments, to deicing and industrial conditions. The American Concrete Institute (ACI) Committee 201 and ACI 318-14 have established guidelines for determining the potential for sulfate attack from external sources. Table 12 (General Guideline Requirements for Concrete Subject to Sulfate Exposure) has been developed to provide the design engineer with guideline recommendations for cement type based on the severity of potential sulfate exposure associated with the tested soil encountered during the current exploration.

Table	Table 12: General Guideline Requirements for Concrete Subject to Sulfate Exposure				
Severity of Potential Exposure	Water Soluble Sulfate (SO ₄) in soil (%) by mass	Sulfate (SO₄) in water (ppm)	Maximum Water Cementitious Materials Ratio	Cementitious Material Requirements	
S0 (negligible)	SO ₄ < 0.10	SO ₄ < 150	No Requirement	No Requirement	
S1 (Moderate)	0.10 < SO ₄ < 0.20	150 < SO ₄ < 1,500	0.50	ASTM C150 Type II Cement	
S2 (Severe)	0.2 < SO4 < 2.0	1,500 < SO ₄ < 10,000	0.45	ASTM C150 Type V Type I Cement with 20% Class N Pozzolan Type I Cement with 20% Class F Fly Ash	
S3 (Very Severe)	SO4 > 2.0	SO ₄ > 10,000	0.40	Refer to ACI 201.2R.16 and ACI 318-14	
NOTES: 1. Table	NOTES: 1. Table reference: ACI 201.2R.16, publication Table 6.1.4.1a and 6.1.4.1b and ACI 318-14, Table 19.3.1.1				

Soil chemistry test results are included in Appendix B and Table 13 (Soil Sulfate Content Results).

	Table 13: Soil Sulfate Content Results					
Exploration Designation	Sample IDSample Depth (ft)Sulfate Content (%)Severity of Potential Exposurew/cm by mass,Permitted Cement Type					
TP-5	5B	4.0-5.0	< 0.02	S0	No Restriction	No Restriction
NOTES: 1. Recommendations based on ACI 201.2R-16.						

A corrosion specialist should be consulted to determine if the site soil conditions warrant further investigation or if proposed structures require corrosion protection.

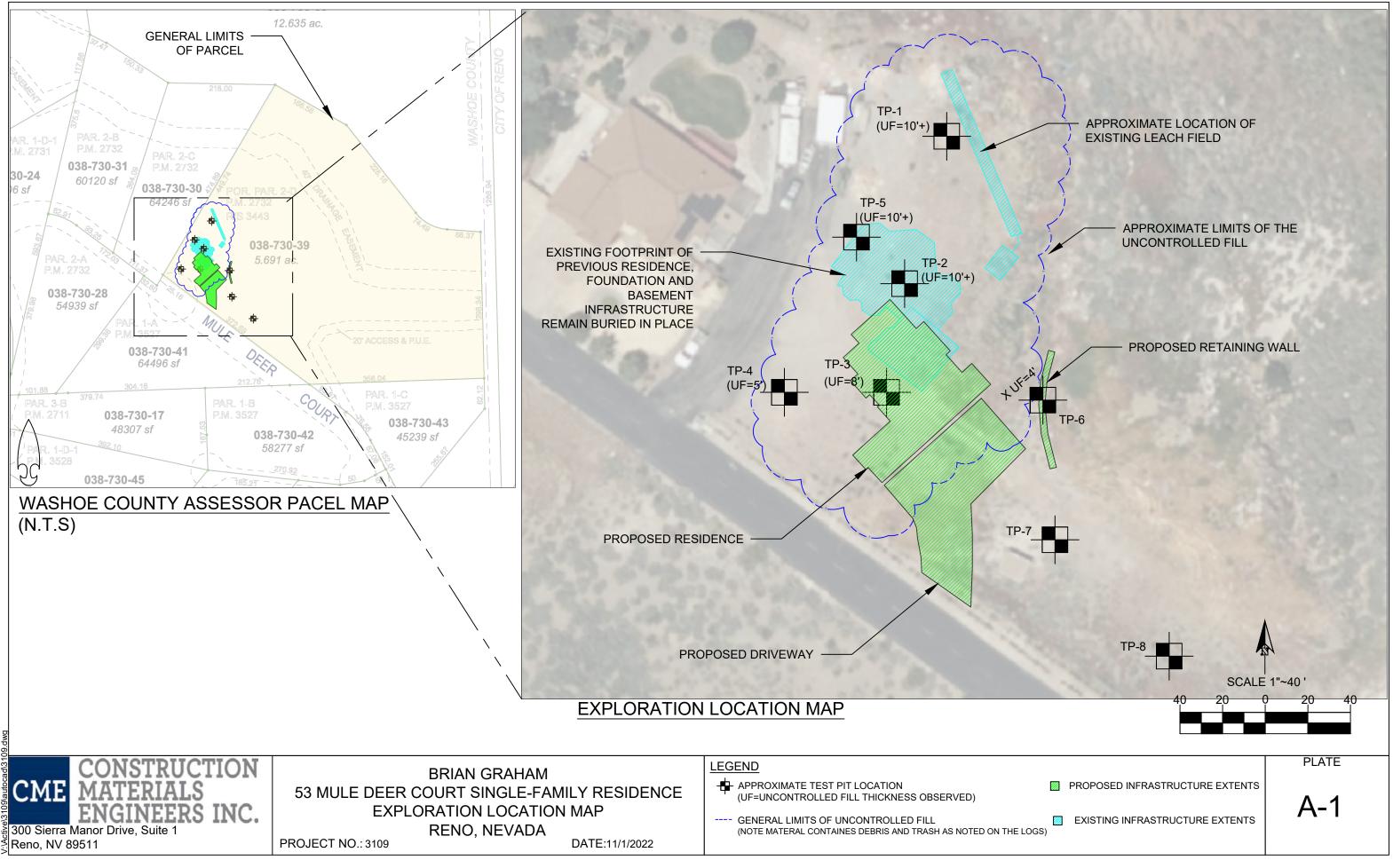
9.0 CONSTRUCTION OBSERVATION AND TESTING SERVICES

The recommendations presented in this report are based on the assumption that the owner/project manager provides sufficient field testing and construction review during all phases of construction. These construction observations and testing services should include but not be limited to:

- Observation, documentation and field density testing during site preparation and grading;
- Structural observation and inspection per 2018 IBC for concrete and reinforcing steel;
- Field density testing of utility bedding sand and trench backfill;
- Laboratory testing for materials qualification and compliance with project specifications; and
- Observation, testing, and documentation during paving operations.
- Foundation inspection prior to placing rebar;

CME employs a large staff of certified inspectors and testers to provide these services. Prior to construction, the owner/project manager should schedule a preconstruction conference to include, but not be limited to: owner/project manager, project engineer, general contractor, earthwork and materials subcontractors, and geotechnical engineer. It is the owner's/project manager's responsibility to set-up this meeting and contact all responsible parties. The conference will allow parties to review the project plans, specifications, and recommendations presented in this report, and discuss applicable material quality and mix design requirements. All quality control reports should be submitted to the owner/project manager for review and distributed to the appropriate parties.

Additionally, all plans and specifications should be reviewed by the engineer responsible for this geotechnical report to determine if they have been completed in accordance with the recommendations contained herein. It is the owner's/project manager's responsibility to provide the plans and specifications to the geotechnical engineer.


10.0 LIMITATIONS

Exploration Location and Geologic Variations	 This report has been prepared in accordance with generally accepted local geotechnical practices. The conclusions and recommendations of this report are provided for the design and construction of the proposed project as described in this report. The analyses and recommendations contained herein are based upon field exploration locations included on Plate A-1. Exploration locations included as part of this report should be considered accurate only to the degree implied by the methods used. This report does not reflect soil, rock, or groundwater variations that may become evident during the construction period, at which time re-evaluation of the recommendations may be necessary.
General Intent and Information Distribution	 The intent of this report is to provide geotechnical information related to construction and design of the project. The owner/project manager is responsible for distribution of this report to all designers and contractors whose work is affected by geotechnical recommendations provided. In the event of changes in the design, location, or ownership of the project prior to construction, our recommendations should be reviewed by our geotechnical representative. If our engineer is not accorded the privilege of making this recommended review,
	the CME can assume no responsibility for misinterpretation or misapplication of his recommendations or their validity in the event changes have been made in the original design concept without our prior review.
Warranties	• CME makes no other warranties, either expressed or implied, as to the professional advice provided under the terms of this agreement and included in this report. Any use, reliance on, or decisions, which a third party makes based upon the information contained in this report, are the sole responsibility of such third parties. CME accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.
Clay Soil	 Clay soils may be present in discontinuous areas below the proposed improvements. Clay soils may potentially shrink or swell (volume changes) in response to changes in the moisture content of the soil. Moisture changes in these soils can occur as a result of seasonal variations in precipitation, poor site drainage, landscape irrigation, leaking underground pipes, capillary action, or from other sources. Volume changes in clay soils can cause differential movements in structural elements constructed in the sphere of influence or bearing on the clay soil. The project geotechnical engineer shall be notified where questionable soils are encountered.
Standard Owner Maintenance and Monitoring Responsibility	 All structures are subjected to deterioration from environmental and manmade exposures. As a result, all structures require frequent monitoring and regular maintenance to prevent damage and/or deterioration. Such monitoring and maintenance are the sole responsibility of the Owner. CME, Inc. shall have no responsibility for such issues or resulting damages.
Environmental Hazards Evaluation	• Any evaluation of the site for the presence of surface or subsurface hazardous substances is beyond the scope of this study. When suspected hazardous substances are encountered during routine geotechnical investigations, they are noted in the exploration logs and reported to the client.

APPENDIX A

	ect: Tion	53 : FIL	MULE L PAI	DEEF D, 39.5		RESIDENCE -119.93343	EXCAVATION E	CONTRACTOR: CLIE CUIPMENT: LINK-E AND TYPE: 4 FEET, H:	ELT 245 X4	BEGIN I COMPL SURFAC BACKFI WATER	etion Ce el Ll me	I DAT EVAT ETHO	E: 9/ ION: D: TA	16/20: 4866 MPEI	(ft) (C CUT	
LOGG	ED B	Y: C	JJ				TEST PIT LENG	iTH:		READIN	G TA	KEN:	9/16/	2022		
ELEVATION (ft)	DEPTH (ft) 🚽	SAMPLE	$\mathbf{}$	POCKET PEN. (TSF)	GRAPHIC LOG		DESCRIPTIO	n	△ DCP CORREL SPT N VALUE 10 20 30 PL MC 0 20 40 60 □ FINES CONTEN 20 40 60	- •	IQUID IMIT		DRAT			REMARKS
□ ₩ -4864- -4862- -4860- -4858-			1A 1A		5	(CL); brown; dry COBBLES, up tr coarse to fine, s 3.0 in. nominal c subrounded SAN hard [UNCONTF SILTY SAND wi light brown to tai to subrounded C diameter; about subrounded GR about 50% coars SAND; about 25 asphalt slabs up Moist.	ubrounded to roun liameter; about 35 MD; about 50% me ROLLED FILL]. ith GRAVEL and (n; dry to moist; ab COBBLES, up to 5. 20% coarse to fine AVEL, up to 3.0 in se to fine, subangu % medium plastici	unded to rounded iameter; about 15% ded GRAVEL, up to % coarse to fine, dium plasticity fines; 	0 □			14	14.0		25.2	Large slabs of asphalt throughout test pit. Grid and fabric at 3.0 feet
		1				Bottom of excav	ation at 10.0 ft bgs	10.0 S		:	1	I	1	I	1	1
С	M	Έ		:0 /A	N T G	STRUC ERIALS INEERS	TION	Construction M 300 Sierra Man Reno, Nevada 8 (775) 851-8205	or Drive, Suite 39511		C. _{PF} EX	ROJEC (PLOF		3 MUI N: T		09 ER CT RESIDENCE PLATE: A-2

									LOG OF TES	TP-2							
PROJ									CONTRACTOR: CLIE	ENT (Q&D)	BEGIN I						
							RESIDENCE 9, -119.93349		EQUIPMENT: LINK-E AND TYPE: 4 FEET,		COMPL SURFAC BACKFI	CE EL	EVAT	ION:	4866	(ft) (C	County GIS)
CLIEN	T:	BR	IAN	GR	AHAN	1		TEST PIT WIDT		JILLIII	WATER						
LOGG	ED	BY	: C	JJ				TEST PIT LENG	GTH:		READIN	G TA	KEN:	9/16/	2022		
N			LD	0	í.	: LOG				△ DCP CORRE SPT N VALU 10 20 30							
ELEVATION (ft)	DEPTH (ft)		SAMPLE	SAMPLE	POCKET PEN. (TSF)	GRAPHIC		DESCRIPTIC	N	0 20 40 60 20 40 60 20 40 60	80 100		ASTIC DEX	ISTUR)	DENSI CF)	PASSII SIEVI	REMARKS
ЩĘ	ā	5	SA	SA	2 8	U U				20 40 60) 80	<u> </u>	۲z	ಶಲಿ	٥ĕ	sõ%	
-		1-		2A			dry; about 5% to 6.0 in. nomin subrounded to i diameter; about subangular to s	al diameter; about rounded GRAVEL, t 50% mostly mediu	nded COBBLES, up 5% mostly fine, up to 3.0 in. nominal um to fine, about 40% medium FILL].	- 0 - D		40	24	9.6		42.7	
-4864-		3-		2C			dry to moist; ab rounded GRAV about 50% coa	out 20% coarse to EL, up to 2.0 in. no rse to fine, subangu 0% medium plastic	ular to subrounded	0-B-		41	23	14.5		29.1	Large slabs of asphalt to 7.0 feet.
-4862-		4-		2B			30% coarse to to	LAY (CL); dark bro fine, subangular to lium plasticity fines	4.0 own; moist; about subrounded SAND; s [UNCONTROLLED								Interbedded layers of clay and sand throughout test pit.
-4860-		5- 6- 7- 8-					moist; about 20 subrounded GF about 55% coa	% coarse to fine, s AVEL, up to 3.0 in rse to fine, subangu 5% medium plastic	n. nominal diameter; ular to subrounded								Concrete foundation on the west side of test pit wall from 7.0 to 10.0 feet.
									10.0								Concrete slab with rebar at bottom of test pit.
							Bottom of exca	vation at 10.0 ft bg	s								
С	M	1]	E		20 1 A 1 N	N T G	ISTRUC ERIAL INEER	CTION S S, INC.	Construction M 300 Sierra Man Reno, Nevada (775) 851-8205	or Drive, Suite 89511		C. _{PF} EX	ROJEC (PLOF ITRY		З МU N: Т СЈЈ	P-2	09 ER CT RESIDENCE PLATE: A-2 SHEET 1 of 1

										LOG OF TES	ST PIT	TP-	3							
	ECT	Г:	53 I	MULE	DEE			SIDENCE	EXCAVATION	Contractor: Cli	ENT (Q8	&D)		egin (ompli					22	
							5, -1	119.93353		QUIPMENT: LINK-E AND TYPE: 4 FEET,			B		LL ME	THO	d : TA	MPE	D CUT	County GIS) TINGS
LOGG						/1			TEST PIT LENG				_	EADIN						
TION	f)	2	ELD Щ	~	ET SEJ	HC LOG			DESCRIPTIC	DN	_	DCP COR SPT N VA 20 PL MC								REMARKS
ELEVATION (ft)	DEPTH (i N	SAMPLE	SAMPLE	POCKET	GRAPHIC					0 20	$\frac{20}{20}$ $\frac{20}{40}$ $\frac{40}{10}$ $\frac{10}{10}$	60 TENT 60	<u>80 100</u> (%) □ 80		PLAST INDEX	MOIST (%)	D. DEN (PCF)	% PAS 200 SIE	
								about 20% coars GRAVEL, up to 2 coarse to fine, su	e to fine, subang 2.0 in. nominal dia ubangular to subre	C) ; dark brown; dry; ular to subrounded imeter; about 50% ounded SAND; about [UNCONTROLLED			• • • • • • • •							Trash and debris in upper 4.0 feet.
-4864-		.1-					F	FILL].	sucty mes, naru	IUNCONTROLLED										Easy digging throughout test pit.
1001		- ·3-		3A											41	23	14.5		29.1	
-4862-		-4- - -5		3В			s s	streaks; dry to m subangular to su	oist; about 20% c	about 80% medium					- - - - - -					Chunks of wood at 5.0 feet
-4860-		-6 -7																		
-4858-		.8 .9		3C			r s	noist; about 20%	6 coarse to fine, s ID; about 80% me	8.0 k tan and orange; ubangular to edium plasticity fines)									-
-4856-		10- 11-																		
-4854-		12- 13-		3D				about 5% fine, si about 25% coars	ubangular to subr e to fine, subang	h red specks; moist; ounded GRAVEL; ular to subrounded ity fines [ALLUVIAL)									
										14.0)									
С	ľ	1]	E		CC ///)N \T G	15	STRUC	TION , INC.	s Construction N 300 Sierra Man Reno, Nevada (775) 851-8205	ior Dri 89511	ve, Sui	inee i te 1	rs, In	C. PR EX EN	OJEC PLOF		3 MUI N: TI CJJ	P-3	09 ER CT RESIDENCE PLATE: A-2 SHEET 1 of 1

								LOG OF TES	ST PI	T T	P-4								
PROJ	ECT I	NO:	3109)			EXCAVATION (CONTRACTOR: CLIE	ENT (C	2&D)		BE	GIN	DATE	9/10	6/2022			
						RESIDENCE										E: 9/			
LOCA	TION	: FIL	L PAI	D, 39.	52085	, -119.93370		EQUIPMENT: LINK-B		-								() (County GIS)
CLIEN	IT. B	DIAN	CP		1		TEST PIT WIDT	AND TYPE: 4 FEET,	5 IEE	IH		_							
LOGG					/1		TEST PIT LENG					_				9/16/			
							1.20111.22.0							•		0, 10,			
	F	IELC)		G				<u> </u>				D		LAB	ORAT	ORY	/	
z	£		0 Z		Č,				1	SPT N 10 20	1 VALU	0 <u>4</u>	0						
Ê	\sim	щ	μ	ET SE	Ξ₽		DESCRIPTIC	ON							ICITY	UR	ls	SSING	REMARKS
ELEVATION (ft)	DEPTH	SAMPLE	MPI	UN N	GRAPHIC					<u>20 40</u>) <u>6</u>	0 8	0 100	≣⊑	LS T	IST	Ш́Г.	SIIS	
Ξ£	B	SAI	SAMPLE	POCKET	i B					10 20 PL 20 40 NES C 20 40	0NTE) 6	ENT (0 8	%)니 ()	S∍	2 Z	8 8	D. C	% PASSING 200 SIEVE	
		_				dark brown; dry COBBLES, up t coarse to fine, s to 3.0 in. nomin subangular to s plasticity fines; [UNCONTROLI	r; about 5% subang to 5.0 in. nominal d subangular to subro nal diameter; about subrounded SAND; diatomaceous piec	1.5						· · ·					Trash, wood, and other debris in upper 5.0 feet.
-4868-	2-					moist; about 25 subrounded GR	5% coarse to fine, s RAVEL, up to 2.0 in	subangular to n. nominal diameter; ular to subrounded						*					-
	3-					SAND; about 30		ines; diatomaceous						*					Concrete piece in test pit at
-4866-	4-		4A						0		-			47	27	11.6		31.8	3.0 feet.
								5.0			· · · · · · · · · · · · · · · · · · ·			* . * .					
	5- 		4B			30% medium to	LAY (CL); dark bro o fine SAND; about ALLUVIAL SEDIM	own; moist; about 70% medium						*					-
-4864-																			-
-4862-	8-													• • •					
	9-							9.0											
-4860-			4C			brown; moist; a 10.0 in. nomina subangular to s nominal diamete	about 10% subangu al diameter; about 2 subrounded GRAVE ter; about 45% coai							•					Cobbles encountered at 9.0 feet.
-000		-				plasticity fines [about 2576 medium											
	H							12.0						*					
	·	·				Bottom of excav	vation at 12.0 ft bg			· · ·				·	<u> </u>	<u> </u>		<u> </u>	·
С	Μ	Έ		CC 1P N	N T G	STRUC ERIAL INEER	CTION S S, INC.	Construction N 300 Sierra Man Reno, Nevada 8 (775) 851-8205	or Di 8951	rive, S			s, In	C. _{PF} E) EN	ROJE((PLOF ITRY	CT NU CT: 5 RATIO BY: (ED BY	3 MU N: T CJJ	LE DE P-4	09 ER CT RESIDENCE PLATE: A-2 SHEET 1 of 1

								LOG OF TES	ST PI	T 7	TP-5	5							
PROJ							EXCAVATION C	CONTRACTOR: CLI	ENT (C	2&D)		в	EGIN I	DATE	9/1	6/2022			
						RESIDENCE										E: 9/			
LUCA	TION	: FIL	L PA	D, 39.5.	2105,	-119.93358	_	QUIPMENT: LINK-E AND TYPE: 4 FEET,			ł							. , .	County GIS) TINGS
CLIEN	IT: B	RIAN	I GR/	AHAM			TEST PIT WIDT		UTLL							NOT E			
LOGG	ED B	Y: C	;JJ				TEST PIT LENG	TH:				R	EADIN	G TA	KEN:	9/16/	2022		
	F	IELC			LOG										1.	ORAT			
No	£		No	E (C C					PL	MC	30 4 Ll	_		ICITY	Ш	≽	SSING	
ATI	Ĕ	L L	۲ ۳	(TS	H		DESCRIPTIC	N	0 2	20 4		60 8	80 1 00	₽.	E ×	Ē	SNS	SSI EV	REMARKS
ELEVATION (ft)	ОЕРТН (SAMPLE	SAMPLE	POCKET PEN. (TSF)	GRAPHIC				🗆 FI	NES (CONT	ENT	<u>80 100</u> (%) □ 80	D MIT	PLASTICITY INDEX	NOIS	Ш'n	% PASSING 200 SIEVE	
Ш£		Ś	Ś	<u>a</u> <u>a</u>	G	CANDY Ison C	LAY with GRAVEL		2	<u>20</u> 4	10 (60 8	<u>80</u>		⊒ ⊇	≥ల	06	282	
	_					(CL); brown; dr	y; about 5% subro	unded to rounded											
						coarse to fine.	subrounded to roun	iameter; about 15% ided GRAVEL, up to											
						3.0 in. nominal subrounded SA	diameter; about 35 ND: about 50% me	% coarse to fine, edium plasticity fine <mark>s</mark> ; ₍		:									
	-1-					hard [UNCONT	ROLLED FILL].		/	:	: :	: :	:						
						(SC); light orang	gish brown; dry to r	noist; about 5%											
	_					nominal diamet	er; about 10% sub	ERS, up to 20.0 in. angular to		:		÷							
-4865-						subrounded CC diameter; about	BBLES, up to 12.0 t 10% fine, subang) in. nominal ular to subrounded											
4005							3.0 in. nominal dia subangular to subro	meter; about 50% ounded SAND; about											
			5A				city fines [UNCON]		0		<u>.</u>			46	25	11.1		29.8	
	-3-									: :	<u>.</u>	÷	÷						
	_																		
		×***				CLAYEY SAND) (SC) ; dark brown;	3.5 moist: about 60%											Rebar and conduit pipe at
	_					angular to suba	ingular SAND; abou	ut 40% medium				÷	÷						3.5 feet.
-4863-	-4-					plasticity intes [ONCONTROLLED	· ·ccj.		: 	:	;	: :						
												÷							
	_		5B							:									
	5-																		
	_									:		: :							
-4861-	-6-									:	<u>.</u>	÷	<u>;</u>						
								7.0											
	7-	1						d COBBLES (SC);						1					
	\square					COBBLES, up t		diameter; about 20%				:							
	_					to 3.0 in. nomin	al diameter; about	ounded GRAVEL, up 40% coarse to fine,				·	 						
-4859-	-8-						ubrounded SAND; UNCONTROLLED	about 30% medium FILL].			<u> </u>	<u>.</u>							Ormanata farm dation
	\square							-				: : :	·····						Concrete foundation encountered. Concrete slab
												: : :							with rebar and wood at 8.0 feet.
	\square																		
	-9-	1								:	<u>:</u>	:	<u>:</u>	+					
														1					
	\square											:							
								10.0)										
						Bottom of excav	vation at 10.0 ft bgs	3											
			(0	N	STRIC	TION	Construction M	later	ials	Engi	ineer	rs, In	r I					
C	Μ	F	N	ΛA	Ť.	FRIAT	STICIT	300 Sierra Man	or Dr	ive,						RATIO			ER CT RESIDENCE
C	111		F	N	Gi	NFFD	CTION S S, INC.	Reno, Nevada (775) 851-8205		I						BY: (-	PLATE: A-2
			-	17.4.	u.		0, 1110.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						CI	IECK	ED BY	: SA	H	SHEET 1 of 1

PROJ					DFF	RCT	RES	DENC			EXC	AVA		CON	ITRAC	TOR:	CLIE	ENT (O	2&D))		-						22			
	TIOI	N: BRI	39.52 AN (2084 GRA	, -119	.9332				-	BUC TES	KET F PIT	SIZE /	ANC TH:) TYPI	NT: L E: 4 F				〈 4		SL BA W	JRFAG ACKFI ATER	ce el Ll Me Dep1	EVAT ETHO 'H:	ION: D: T. NOT E	4852 AMPE ENCO		TTIN		
OGG	ED	BY:	CJ	J							res	T PIT	LENG	GTH	:							RE	ADIN	IG TA	KEN:	9/16	/2022				
(ft)	DEPTH (ft)		-	SAMPLE NO	POCKET PEN. (TSF)	GRAPHIC LOG					DE	SCR	IPTIC	ON				1	00	P COP T N V 20 M 40 5 COP 40	AL L L						D. DENSITY	% PASSING		REMA	ARKS
	1	1-					bro CC co to su	own; d DBBLE arse to 3.0 in. oangu	ry; a S, up fine nom ar to	bout o to 8 , sub inal (sub)	5% 8.0 ir angi diam oun	subai 1. nor ular to eter; ded S	ngular ninal o subr about SAND;	r to s diam round t 45% ; abc	subrou leter; a ded G % coar	about 2 RAVEL se to fi % low to	5% , up ne.							-					Fi	ill on one end t down to 4.0	
348-		2		6A			Di	atoma	ceous	s pie	cesv	within	l.											- - - - - -							
		5-10					wł ab	ite; dr	/ to r % m	noist ediur	; abo	out 25	5% me	ediur	with or m to fii _LUVI/	range a ne SAN AL	4.5 nd ID; 5.5		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		-							
846—		5					to to su pla	arse to 3.0 in. bangu	fine nom ar to fines	, sub inal o subi	ang diam roun	ular to eter; ded S	o subr about SAND;	round t 45% ; abc	ded G % coar out 35%	about 2 RAVEL rse to fi % medi [MIXED	0% , up ne, um	-						-							
844—		3-		6B				out 1(% fine		ne Gf	RAV	EL; a	bout 5	50%	SAND); about	t					· · · · · · · · · · · · · · · · · · ·		-							
842-	s	0-	***														10.0		· · · · · · · · · · · · · · · · · · ·			• • • •		-							
				6C			25 fin	% me es [AL	lium LUVI	to fir AL S	ie S/ EDI	ànd; Men	about	t 759	wn; ma % high	oist; ab i plastic	out ity <u>11.0</u>					· · · · ·	- - - - - - - - - - - - - - - - - - -								
C	M	1 H		C №	:0 1 A	N	S	ΓR	U	C'	T]	0	N	C 3	00 S	ierra Neva	Man	or D	ive				s, In	C. PF	OJE	CT:				CT RESIDE	NCE

		T 11/	. ^	100				EVOAVATION			יחי			CIN .	\ <u>\</u>	0/4/	2/2000	,		
ROJ					DEE	RCT	RESIDENCE		CONTRACTOR: CLI	ENT (Qð	kD)		_				5/2022 E: 9/		22	
.OCA								FXCAVATION F	EQUIPMENT: LINK-I	SELT 24	5 X4		_							County GIS)
					, -				AND TYPE: 4 FEET										() (TINGS
	NT:	BR	IAN	GRA	HAN	1		TEST PIT WIDT					_						JNTEF	
.OGG	GED	BY	: C.	IJ				TEST PIT LENG	STH:				RE		G TAI	KEN:	9/16/	2022		
		FIE	LD			G							ELATE	D		LAB	DRAT	ORY	/	
z		-		9	0	Č,				10 P 0 20 □ FIN 20	SPT N 20	1 VALI)3	UE ∆ 0 4	0		≿	ш	≻	<u>ں</u>	
2		-	щ	щ I	г'n	12		DESCRIPTIC	N	P	L	MC				<u>.</u>	R	SIT	SIN SIN	REMARKS
A N	Ē		۲ ۲	4	<u> </u>			DEGORATING		0 20	40	<u>6 (</u>	0 8	0 100	<u></u> ⊢	r S T	STI	Ц Ш П	AS: SIE	REWARKS
ELEVATION (ft)	DEDTH /	5	SAMPLE	SAMPLE NO	POCKET PEN. (TSF)	GRAPHIC				□ FIN	ES C	ONTE	ENT (%) 🗆	ğ₹	Ζē	<u></u>	0.0	G 0	
		-	ທ 	ω				ID (SC); tan; dry; ab	out 55% medium to	20	4() 6	<u>08</u> :	0 :		_ =	20		<u> </u>	
	Η						fine SAND; ab	out 45% medium pla	asticity fines;											
							diatomaceous	pieces within [MIXE	D ALLUVIUM].											
	Д	×																		
	H	-1-											:	:						
	Н	×.																		
	Η	ĺ		7A							• • • • •		: :							
		Ŕ																		
1848-		_2_																		
	Н																			
	Н	Ŕ																		
											•••••		: :							
									3.0		:									
							Fat CLAY wit	h SAND (CH); dark	brown; dry; about 75% high plasticity,											
							high toughnes	is fines [ALLUVIAL S	SEDIMENTS].											
	\vdash							-	-											
				7B							•••••		: :							
1846-		-4-8								:	:		:	:						
									4.5	5										
		×	****				SANDY lean	CLAY (CL); brown; o	dry to moist; about	4										
						$\langle \rangle$	30% medium	to fine SAND; about ; calcareous stringer	70% medium											
		-5 🛛	***				SEDIMENTS]						;	:						
				7C		\bigvee														
	\square												: : · · · · · ·							
1844-		-6	****	_									:							
						\bigvee	_				•••••									
	+	-7-									;									
	Н						/			····•	•••••									
	Η										•••••									
1842-	H	-8-					/													
	Н																			
	Н												: :	 :						
	Η																			
							*													
	Ц	Ĭ											:	:						
	Н					\angle			9.8	5										
	Н						SEDIMENTAL		DNE), (HUNTER				: :							Hard digging and scrapir with bucket.
	H						intensely weat	MATION), light brow thered, weak, moder	rately soft, intensely											
										· ·										
									I						PR			MBFF	R: 310	09
				C	:0	N	STRU	CTION S S, INC.	Construction M					s, In	r I					ER CT RESIDENCE
C	N	11	2	N	1A	T	ERIAT	S	300 Sierra Mar Reno, Nevada		/e, S	suite	91				RATIO			
		T.T.	-	Ē	N	ĉ	INFED	S INC	(775) 851-8205								BY:			PLATE: A-2
				1	T.A	U.	114 1 1 1	U, IIV.	1,, 00, 0200						10	IECKI	n ev			SHEET 1 of 2

			FIELD 0			Δ DCP CORRELATED SPT N VALUE Δ		LABORA		
ELEVATION (ft)	DEPTH (ft)	SAMPLE	SAMPLE NO II POCKET PEN. (TSF) [] GRAPHIC LOG	DESCRIPTIO	N	SPT N VALUE A 10 20 30 40 PL MC LL 0 20 40 60 801 □ FINES CONTENT (%) 20 40 60 80		PLASTICIT NDEX MOISTURE (%)	D. DENSITY (PCF) % PASSING 200 SIEVE	REMARKS
	H			to moderately fractured. Bottom of excavation at 10.0 ft bgs] s	20 10 00 00				
	11-									
-4838-	12-									
	13-									
	H									
-4836-										
1000	H									
	H									
	15-									
-4834-	16-									
-4832-	18-									
	H									
-4830-	20-									
	H									
	21-									
	Н									
-4828-	-22-									
			CON	STRUCTION	Construction M	aterials Engineers,			MBER: 3109	CT RESIDENCE
C	M	E	MAT	STRUCTION ERIALS INEERS, INC.	300 Sierra Mano Reno, Nevada 8 (775) 851 8205	or Drive, Suite 1 9511	E	XPLORATIO	N: TP-7	PLATE: A-2
			ENG	INEEKS, INC.	(775) 851-8205			HECKED BY		SHEET 2 of 2

ROJ							EXCAVATION C	CONTRACTOR: CLIE	ENT (Q&I	D)	- H-						22	
				: DEEF 1, -119.		RESIDENCE	EXCAVATION E	QUIPMENT: LINK-B	ELT 245	X4		ompli Urfac						County GIS)
								AND TYPE: 4 FEET,	5 TEETH	1								TINGS
				AHAM			TEST PIT WIDT					ATER					JNTEF	RED
OGG	ED B	SY: (JJ				TEST PIT LENG	ilH:			K	EADIN	GIA	(EN:	9/16/	2022		
		IELD	<u> </u>		(7)						RELAT		1		ORAT		,	
(#)	DEPTH (ft)	SAMPLE		POCKET PEN. (TSF)	GRAPHIC LOG		DESCRIPTIC	N	0 20 □ FINE 20	PT N V. 20 . M 40	30 C L 60	40 L 80 100	<u>a</u> r		STURE	F)	% PASSING 200 SIEVE	REMARKS
Ē	В	SAI	SAI	О́Ш	GR				LI FINE 20	S CON 40	60	(%) ロ 80	ΔZ	<u>P</u>	0 ₩ 8	<u> </u>	200 200	
3 46			88			(CL); brown; ab COBBLES, up to coarse to fine, s to 3.0 in. nomina subangular to su plasticity fines [/ CLAYEY SAND orange and whit subangular to su to fine SAND; at fines; diatomace	ubangular to subro al diameter; about ibrounded SAND; ALLUVIAL SEDIME with GRAVEL (S e; about 15% coar ibrounded GRAVE pout 40% low to m	r to subrounded iameter; about 15% junded GRAVEL, up 30% coarse to fine, 0 about 50% medium ENTS]. C); brown with se to fine, :L; about 45% coarse edium plasticity [MIXED ALLUVIUM]. <u>4.5</u> m; moist; about 75% medium										Soil looks liked decomposed mudstone
42-		-	8B															
338-		-				CREEK FORMA weathered, weat		brown, intensely intensely fractured.										
						DOMOTH OF EXCAV	ation at 12.0 ft bgs						_					
С	M	E			N T GI	STRUC ERIALS NEERS	TION S. INC.	Construction M 300 Sierra Man Reno, Nevada 8 (775) 851-8205	or Driv 39511			rs, In	C. PR EX EN	OJEC PLOF	СТ: 5 КАТІО ВҮ: (3 MUI N: TI CJJ	P-8	09 ER CT RESIDENCE PLATE: A-2 SHEET 1 of 1

SOIL CLASSIFICATION CHART

A-3

PLATE

		SC	DIL CLA	SSIFICA	TION CHART
MAJ	OR DIVISI	ONS	SYMI GRAPH	30LS LETTER	TYPICAL CLASSIFICATION NAMES
		Clean		GW	Well-graded gravels, gravel-sand mixtures, few or no fines
Course grained	Gravel and	gravels		GP	Poorly-graded gravels, gravel-sand mixtures, few or no fines
soils	gravelly soils	Gravels		GM	Silty gravels, gravel-sand-silt mixtures
		with fines		GC	Clayey gravels, gravel-sand-clay mixtures
		Clean	• • • •	SW	Well-graded sands, gravelly sands, few or no fines
More than 50% of the material is	Sand and sandy	sands		SP	Poorly-graded sands, gravelly sands, few or no fines
larger than No. 200 sieve size	soils	Sands		SM	Silty sands, sand-silt mixtures
		with fines		SC	Clayey sands, sand-clay mixtures
				ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity
Fine grained soils		Liquid Limit less than 50		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
	Silts and		\mathcal{W}	OL	Organic silts and organic silt-clays of low plasticity
More than	clays	Liquid		МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
50% of the material is smaller than No. 200 sieve		Limit greater		СН	Inorganic clays of medium to high plasticity
size		than 50	J J	ОН	Organic clays of medium to high plasticity
			<u>76 76 76 76</u> 76 76 76 76 76	PT	Peat or other highly organic soils

NOTES: 1. Dual classifications may occur (e.g. SP-SM, CL-ML, GP-GC)

	PARTICLE ANGULARITY
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces
Subangular	Particles are similar to angular, but have rounded edges
Subrounded	Particles have nearly plane sides, but have well-rounded corners and edges
Rounded	Particles have smoothly curved sides and no edges

	PARTICLE SHAPE
Flat	Particles with width/thickness >3
Elongated	Particles with length/width >3
Flat and Elongated	Particles meet criteria for both flat and elongated

MOISTURE		
Dry No discernable moisture		
Moist Moisture present, but no free water		
Wet Visible free water		

CEMENTATION		
Weak	Crumbles or breaks with handling or light finger pressure.	
Moderate	Crumbles or breaks with considerable finger pressure.	
Strong	Will not crumble or break with finger pressure.	

PARTICLE	SIZE, Ps
Devilations	D- 1 40"

1	Boulders		FS 2 12			
	Cobbles		3" < Ps ≤ 12"		PERCE	NT OF SOIL, Pp
		coarse	<u>3</u> " < Ps ≤ 3"			Pp < 5%
	Gravel	C	<u>1</u> " < Ps ≤ <u>3</u> "	$1 \cap$		
ļ		fine	<u></u> 5‴ < PS ≤ <u>7</u> ″	Μ)	Few	5 ≤ Pp ≤ 15%
		coarse	<u>1</u> ["] < Ps ≤ <u>1</u> "	\sim	Little	15 ≤ Pp ≤ 30%
	Sand	medium	1/ ₆₄ " < Ps ≤ 1/ ₁₆ "	\mathcal{L}	Some	$30 \leq Pp \leq 50\%$
		fine	1/300" < Ps ≤ 1/64"	K I	Mostly	$50 \le Pp \le 100\%$
I	Fines		Ps ≤ <u>1</u> "	К		

SOIL SAMPLE TYPES

Bulk Sample

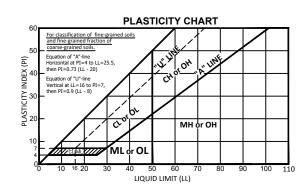
Standard Penetration Test (2.0" OD, 1.42" ID)

California Modified Sampler (3.0" OD, 2.42" ID)

Thin walled Shelby Tube (3.0" OD)

Rock Core

GROUNDWATER SYMBOLS



포

Ŧ

Water level during drilling

Water level after drilling

APPARENT DENSITY OF COHESIONLESS SOIL			
SPT (1.4" ID) N ₆₀			
Very Loose	< 5		
Loose	5 - 10		
Medium Dense	10 - 30		
Dense	30 - 50		
Very Dense > 50			
Based on 60% energy ratio (ER _i). N ₆₀ = N _{measured} * (ER _i /60)			

California Modified Sampler can be corrected to SPT by multiplying by 0.62

CONSISTENCY OF COHESIVE SOIL			
	SPT (1.4"ID) N ₆₀	Unconfined Compressive Strength (psf)	Pocket Penetrometer (tsf)
Very Soft	0 - 1	< 500	< 0.25
Soft	2 - 4	500 - 1,000	0.25 - 0.5
Medium Stiff	5 - 8	1,000 - 2,000	0.5 - 1.0
Stiff	9 - 15	2,000 - 4,000	1.0 - 2.0
Very Stiff	16 - 30	4,000 - 8,000	2.0 - 4.0
Hard	31 - 60	8,000 - 16,000	> 4.0
Very Hard	> 60	> 16,000	

E CONSTRUCTION MATERIALS ENGINEERŠ, INC.

CN

ROCK CLASSIFICATION CHART

PLATE

BEDDING SPACING, Sb Massive 10' < Sb Very Thickly Bedded 3' < Sb ≤ 10 Thickly Bedded 1' < Sb ≤ 3' Moderately Bedded 4" < Sb ≤ 1' Thinly Bedded 1" < Sb ≤ 4" Very Thinly Bedded <u>1</u>" < Sb ≤ 1" Laminated Sb ≤<u>1</u>"

	ROCK HARDNESS			
Extremely Hard	Cannot be scratched with a pocketknife or sharp pick. Can only be chipped with repeated heavy hammer blows.			
Very Hard	Cannot be scratched with a pocketknife or sharp pick. Breaks with repeated heavy hammer blows.			
Hard	Can be scratched with a pocketknife or sharp pick with difficulty (heavy pressure). Breaks with heavy hammer blows.			
Moderately Hard	Can be scratched with a pocketknife or sharp pick with light or moderate pressure. Breaks with moderate hammer blows.			
Moderately Soft	Can be grooved 1/16 in. deep with a pocketknife or sharp pick with moderate or heavy pressure. Breaks with light hammer blow or heavy manual pressure.			
Soft	Can be grooved or gouged easily with a pocketknife or sharp pick with light pressure, can be scratched with fingernail. Breaks with light to moderate manual pressure.			
Very Soft	Can be readily indented, grooved or gouged with fingernail, or carved with a pocketknife. Breaks with light manual pressure.			

WEATHERING FOR INTACT ROCK Diagnostic Features Chemical Mechanical General Description Texture and leaching weathering-discoloration and/or weathering-Characteristics oxidation grain boundary Fracture Body of rock Texture Leaching conditions surfaces No No Hammer rings when No discoleration, not discoloratio No separation, Fresh No change crystalline rocks are leaching oxidized. n or ntact (tight). struck oxidation Discoloration or Minor to oxidation is limited to complete Hammer rings when surface of, or short discoloratio No visible Slightly crystalline rocks are separation distance from. n or Preserved Preserved Weathered stuck. Body of rock fractures; some oxidation intact (tight) not weakened. feldspar crystals are of most dull. surfaces Discoloration or oxidation extends All fracture Partia lammer does not from fractures usually surfaces separation Moderatel Generally Generally ring when rock is throughout; Fe-Mg are struck. Body of rock preserved Weathered preserved ninerals are "rusty" discolored boundaries is slightly weakened. eldspar crystals are or oxidized visible. "cloudy" Dull sound when Discoloration or struck with hammer oxidation throughout Partial usually can be all feldspars and All fracture separation Texture roken with altered by eaching Fe-Mg minerals are surfaces rock is moderate to heavy altered to clay to are friable: in chemical of soluble anual pressure or ntensely some extent; or discolored disintegratio minerals semiarid Weather by light hammer blow chemical alteration or oxidized conditions mav be ithout reference to (hydration, omplete produces in situ surfaces granitics are planes of weakness disaggregation, see grain boundary friable. disaggregat argillation). , such as incipient or ed. hairline fractures, or conditions /einlets Discolored or oxidized throughout, Resembles a soil Complete Can be granulated but resistant mineral partial or complete separation by hand. Resistant emnant rock structure such as quartz may of grain minerals such as nay be preserved: be unaltered: all Decomr boundaries quartz may be feldspars and Fe-Mg leaching of soluble present as "stringers' or "dikes." (disaggregat , minerals are minerals usually èd). completely altered to complete. clay

CORE RECOVERY

The core recovery value (REC) provides an indication of the success of the coring operation in recovering the cored rock. Diminished core recovery can be attributed to voids within the rock mass or loss of rock mass due to drilling fluids

 $REC = \frac{\sum(Length of recovered core pieces)(100\%)}{\text{Total length of the core run}}$

ROCK QUALITY DESIGNATION

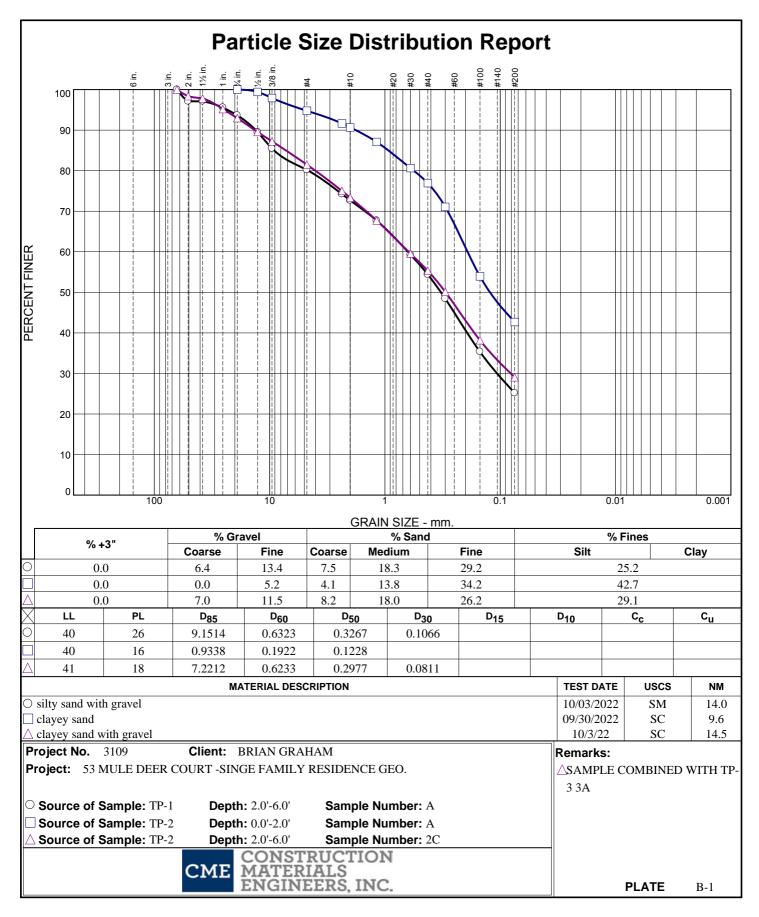
Rock Quality Designation is a measure of the fracturing in a rock mass as observed in a core specimen. A high value of RQD indicates few or widely spaced fractures. RQD is valid for core diameters from 1.4 to 3.335 inches. RQD is based on ASTM D6032.

> $REC = \sum (Length of intact core pieces \ge 4 inches)(100\%)$ Total length of the core run

FRACTURE DENSITY		
Unfractured	No fractures.	
Very Slightly Fractured	Core lengths greater than 3 ft.	
Slightly Fractured	Core lengths mostly from 1 to 3 ft.	
Moderately Fractured	Core lengths mostly from 4 in. to 1 ft.	
Intensely Fractures Core lengths mostly from 1 to 4 in.		
Very Intensely Fractured Mostly chips and fragments.		
Note: exclude mechanical breaks		

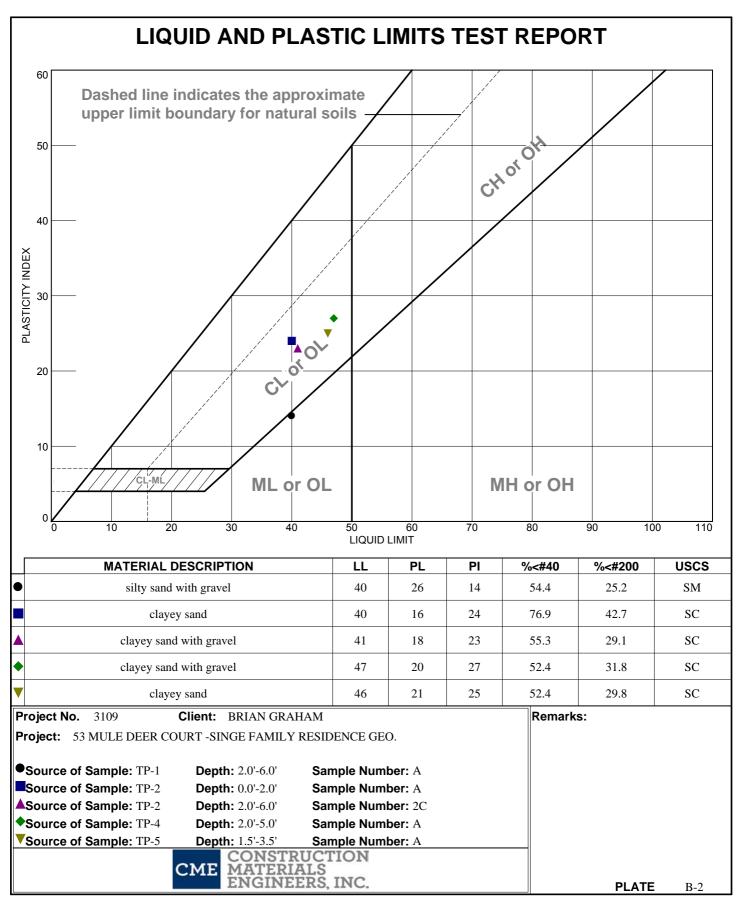
FRACTURE FILLING, FF			
Clean	Clean No visible separation		
Very Thin FF < 1/32"			
Moderately Thin	$\frac{1}{32}$ " \leq FF $<\frac{1}{8}$ "		
Thin	$\frac{1}{8}$ " \leq FF $<\frac{3}{8}$ "		
Moderately Thick	3/8 ≤ FF < 1"		
Thick	1" ≤ FW		

FRACTURE HEALING		
Totally Healed Fracture is completely healed or recemented a degree at least as hard as surrounding room		
Moderately Healed	Greater than 50 percent of fracture is healed or recemented.	
Partly Healed	Less than 50 percent of fractured material, filling, or fracture surface is healed or recemented	
Not Healed	Fracture surface filling is not healed or recemented.	


FRACTURE ROUGHNESS		
Stepped	Near-normal steps and ridges occur on the fracture surface.	
Rough	Large, angular asperities can be seen.	
Moderately Rough	Asperities are clearly visible and fracture surface feels abrasive.	
Slightly Rough	Small asperities on the fracture surface are visible and can be felt.	
Smooth	No asperities, smooth to the touch.	

ROCK STRENGTH			
Plastic	Plastic or very low strength		
Friable	Crumbles easily by rubbing with fingers		
Weak	An unfractured specimen will crumble under light hammer blows		
Moderately Strong	Specimen will withstand a few heavy hammer blows before breaking		
Strong	Specimen will withstand a few heavy ringing hammer blows and will yield with difficulty only dust and small flying pieces		
Very Srong	Specimen will resist heavy ringing hammer blows and will yield with difficulty dust and small flying fragments		


A-4


APPENDIX B

Tested By: <u>○ GP</u> □ HB △ GP Checked By: <u>HB</u>

EXPANSION INDEX OF SOILS

(ASTM D4829 - 21)

Project Name:	53 MULE DEER COURT	Project No.:	3109
Client:	BRIAN GRAHAM	Laboratory No:	36918
Source:	TP-2 C (2'-6') & TP-3 A (2'-5')	Date Tested:	9/30/2022
Date Sampled/Cast:	9/28/2022	Tested By:	M. PONTONI

SPECIMEN PREPARATION									
Oven or Air Dried Oven Dried % Retained on #4 Sieve: 0%									
Wet Weight (g):	470.8	Specific Gravity:	2.70 (ESTIMATED)						
Dry Weight (g):	419.23	Unit Weight Water (pcf):	62.4						
Moisture Content:	12.3%	Weight of Ring (g):	370.12						

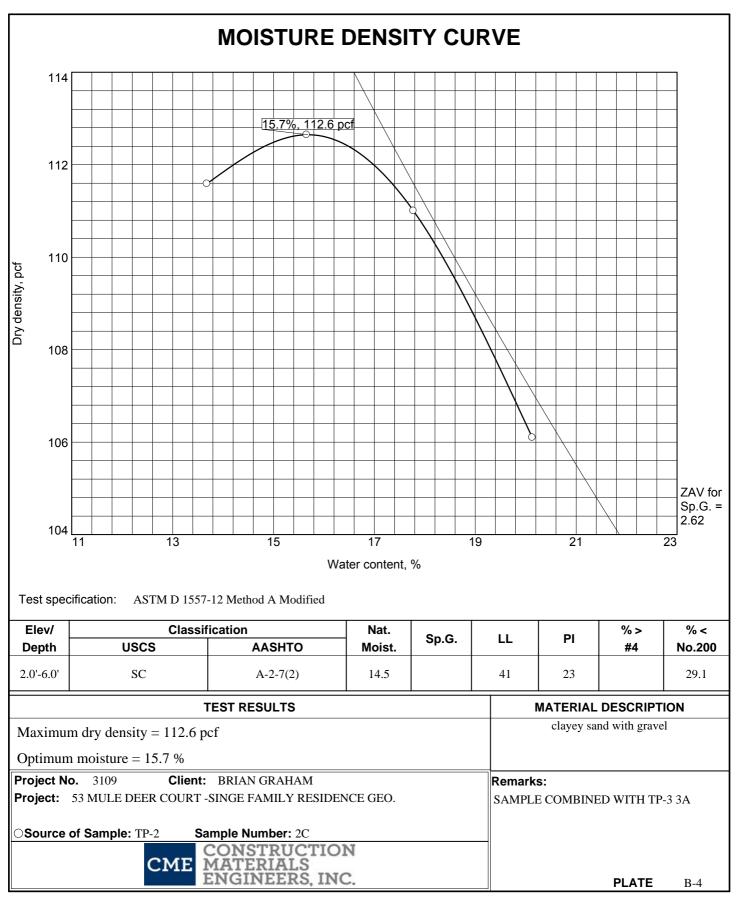
COMPACTION RESULTS									
Compacted Weight (g):	373.5	Compacted Weight (lb):	0.823						
Moist Unit Weight (pcf):	113.3	Dry Unit Weight (pcf):	100.9						

EXPANSION RESULTS							
Initial Height (in):	1.00	Initial Dial Reading (in.):	0.000				
Height Change (in):	0.0445	Final Dial Reading (in.):	0.043				
····g··· g····g·····g·		· · · · · · · · · · · · · · · · · · ·					

CAL	CUL	ATIC	ONS

S = (w * G _s * α_d) / (G _s * α_w) - α_d	EI = (D ₁ -D ₂)/H ₁ * 1000	
w = moisture content	∆H = Change in Height	S_{meas} = determined percent of saturation
G _s = specific gravity	H₁ = Initial Height	El ₅₀ = estimate of the expansion index
α_w = unit weight of water (pcf)	D ₁ = Initial dial reading	
α_{d} = dry unit weight (pcf)	D_2 = final dial reading	

S: 49.5%


43

EI:

CLASSIFICATION TABLE								
Expansion Index 0 -20 21 - 50 51 - 90 91 - 130 > 130								
Potential Expansion	Very Low	Low	Medium	High	Very High			

Form No. QCP-1.14

V:\Active\3109\laboratory testing\[EXPANSION INDEX 3109.xls]HA-1

Tested By: JM

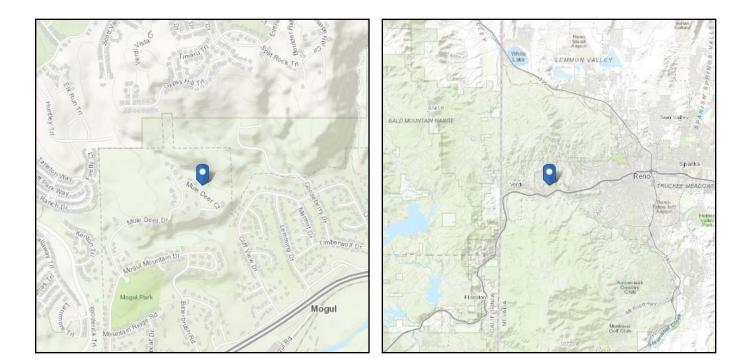
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\$		-0.015							7									
u 0.00 <t< td=""><td></td><td>0.0.0</td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td>4</td><td></td><td>6000</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.0.0						~		4		6000						
$ \begin{array}{c} \underbrace{u}_{0} \underbrace{u}$								$\overline{\Lambda}$	3									
$ \begin{array}{c} \underbrace{u}_{0} \\ u$		-0.01																
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.$							X		-				Tan(ø)	0.5	2		+++++	
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.$. <u>=</u> .					A			_								+++++	
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.$	ion	-0.005				1					osf	4000						
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.$	nat	Dilation			7						ý.							
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.$	orr	0							-		res						++++	
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.016 \\ 0.001 \\ 0.$	Def	0									s							
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.016 \\ 0.001 \\ 0.$	al –	Consol.							 ²		eak						++++	
$ \begin{array}{c} \begin{array}{c} 0.01 \\ 0.016 \\ 0.001 \\ 0.$	rtio	0.005									ď	2000					+++++	
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00	< e	0.000															+++++	
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00																	+++++	
0.015 0 4000 600 Normal Stress, psf 3000 0 5 10 10 10 10 10 10 10 10 10 10 10 10 10		0.01						\mathbf{r}	1								+++++	
0.015 0 2000 4000 600 Strain, % Normal Stress, psf 3000 2000 4000 600 2000 2000 4000 600 2000 2000 1 2 3 2000 2000 4000 600 2000 2000 1 2 3 2000 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 4000 600 2000 600 600 2000 600 600 2000 600 600 2000 600 60				\square				\square									+++++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.015																
Strain, % Sample No. $1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$		0.015	0 4		8		12	1	6				0	2	000	400)0	6000
$ \begin{array}{c} \begin{array}{c} 3000 \\ & & & \\ 2000 \\ & & & & \\ 2000 \\ & & & & \\ 2000 \\ & & & & \\ 2000 \\ & & & & \\ 2000 \\ & & & & \\ 2000 \\ & & & & & \\ 2000 \\ & & & & & \\ 2000 \\ & & & & & \\ 2000 \\ & & & & \\$				Stra	ain. 9	6									Normal S	Stress, ps	ī	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0	, ,	•												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
15 2000 160 16.0 <t< td=""><td></td><td>3000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Sa</td><td>mple N</td><td>0.</td><td></td><td></td><td>1</td><td>2</td><td>3</td><td>4</td></t<>		3000								Sa	mple N	0.			1	2	3	4
2000 2000 0<									_		-		ent. %		16.0	16.0	16.0	16.0
10 2000 4 8 64.8 64		2500																101.2
g 2000 2.42 3.53 5.75 5.75 5.75 <									4	<u>a</u>	-	-	-					64.9
g 1000 <t< td=""><td><u>ب</u></td><td>2000</td><td></td><td>r P</td><td>\square</td><td></td><td></td><td></td><td></td><td>Init</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.6661</td></t<>	<u>ب</u>	2000		r P	\square					Init								0.6661
Image: Second System Image: Second System <td< td=""><td>sd ,</td><td>2000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>2.42</td></td<>	sd ,	2000											_					2.42
Image: Second system Image: Second system <td< td=""><td>ŝ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1.00</td></td<>	ŝ												-					1.00
Image: Second system Image: Second system <td< td=""><td>Stre</td><td>1500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>nt %</td><td></td><td></td><td></td><td></td><td>24.0</td></td<>	Stre	1500											nt %					24.0
LL = 41 $PL = 18$ $Pl = 23$ Assumed Specific Gravity = 2.70 Remarks: $Pl = 23$ Pl	ar					~~~			2									102.0
LL = 41 $PL = 18$ $Pl = 23$ Assumed Specific Gravity = 2.70 Remarks: $Pl = 23$ Pl	she				\uparrow					st	-	-	-					
$LL = 41 \qquad PL = 18 \qquad Pl = 23$ Assumed Specific Gravity = 2.70 Remarks: $Diameter, in. 2.42 2.42 2.42 2.42 2.42 2.42 1.42 2.42 2$	0)	1000								He I			/o					99.5
500Height, in.1.000.990.990.0900510152005101520Strain, %Strain, %1.11.02.5Strain, %1.11.02.5Strain, %Strain, %1.11.02.5Strain, %Strain rate, in./min.0.0010.0010.0010.001Sample Type: REMOLDEDClient: BRIAN GRAHAMDescription: clayey sand with gravelProject: 53 MULE DEER COURT -SINGE FAMILY RESIDENLL= 41PL= 18PI= 23Assumed Specific Gravity= 2.70GEO.Remarks:Source of Sample: TP-2Depth: 2.0'-6.0'Sample Number: 2CProj. No.: 3109Date Sampled: 9/16/2022CONSTRUCTIONConstruction					\sim	~~~	~		1	₹								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		500		+++			_	+++	-		Diame	eter, in						2.42
05101520Strain, %Strain, %1.11.02.5Strain, %Strain, %1.11.02.5Strain, %Strain, %1.11.02.5Strain, %Strain, %Strain, %1.11.02.5Strain, %Strain, %Strain, %1.11.02.5Strain, %Strain, %Strain, %1.11.02.5Strain, %Strain, %Strain, %Strain, %1.11.00.01Sample Type: REMOLDEDStrain rate, in./min.0.0010.0010.0010.0010.001Description: clayey sand with gravelLL= 41PL= 18Pl= 23Assumed Specific Gravity= 2.70Remarks:Project: 53 MULE DEER COURT -SINGE FAMILY RESIDEN GEO.Source of Sample: TP-2Depth: 2.0'-6.0'Sample Number: 2CProj. No.: 3109Date Sampled: 9/16/2022CONSTRUCTIONStrain Strain S		500			++	\square	\square	\square	-									
Strain, %Strain, %Strain, %1.11.02.5Strain, %Strain, %Strain, %Strain, %Strain, %Sample Type: REMOLDEDClient: BRIAN GRAHAMDescription: clayey sand with gravelClient: BRIAN GRAHAMLL= 41PL= 18PI= 23Assumed Specific Gravity= 2.70GEO.Remarks:Source of Sample: TP-2Depth: 2.0'-6.0'Sample Number: 2CProj. No.: 3109Date Sampled: 9/16/2022CONSTRUCTIONDate Sampled: 9/16/2022									1									
Strain, %Strain, %Strain, %Strain, %Residual Stress, psf Strain, % Strain rate, in./min.0.0010.00		0							ļ			•	f					
Strain, % Strain rate, in./min.0.001 <t< td=""><td></td><td></td><td>0 5</td><td></td><td></td><td></td><td>15</td><td>2</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>1.1</td><td>1.0</td><td>2.5</td><td>2.5</td></t<>			0 5				15	2	0						1.1	1.0	2.5	2.5
Strain rate, in./min.0.001 <t< td=""><td></td><td></td><td></td><td>Stra</td><td>ain, %</td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td>, psf</td><td></td><td></td><td></td><td></td><td></td></t<>				Stra	ain, %	6							, psf					
Sample Type: REMOLDED Description: clayey sand with gravel LL= 41 PL= 18 Pl= 23 Assumed Specific Gravity= 2.70 Remarks: Client: BRIAN GRAHAM Project: 53 MULE DEER COURT -SINGE FAMILY RESIDEN GEO. Source of Sample: TP-2 Depth: 2.0'-6.0' Sample Number: 2C Proj. No.: 3109 Date Sampled: 9/16/2022															0.001	0.001	0.001	0.001
Description: clayey sand with gravel LL= 41 PL= 18 PI= 23 Assumed Specific Gravity= 2.70 Remarks: Project: 53 MULE DEER COURT -SINGE FAMILY RESIDEN GEO. Source of Sample: TP-2 Depth: 2.0'-6.0' Sample Number: 2C Proj. No.: 3109 Date Sampled: 9/16/2022 CONSTRUCTION										Str	ain rate	e, in./m	IIN.		0.001	0.001	0.001	0.001
Description: clayey sand with gravelProject: 53 MULE DEER COURT -SINGE FAMILY RESIDENLL= 41PL= 18PI= 23Assumed Specific Gravity= 2.70GEO.Remarks:Source of Sample: TP-2Depth: 2.0'-6.0'Sample Number: 2CProj. No.: 3109Date Sampled: 9/16/2022CONSTRUCTION	Sample	Туре	: REMOLE	DED						Clie	ent: BF	RIAN (GRAHA	M				
LL= 41 PL= 18 PI= 23 Assumed Specific Gravity= 2.70 Remarks: Project: 53 MULE DEER COURT -SINGE FAMILY RESIDEN GEO. Source of Sample: TP-2 Depth: 2.0'-6.0' Sample Number: 2C Proj. No.: 3109 Date Sampled: 9/16/2022	Description: clayey sand with gravel																	
Assumed Specific Gravity= 2.70 Remarks: Source of Sample: TP-2 Depth: 2.0'-6.0' Sample Number: 2C Proj. No.: 3109 Date Sampled: 9/16/2022						Project: 53 MULE DEER COURT -SINGE FAMILY RESIDENCE												
Remarks: Sample Number: 2C Proj. No.: 3109 Date Sampled: 9/16/2022 CONSTRUCTION	LL= 41		PL= 18			PI=	23											
Remarks: Sample Number: 2C Proj. No.: 3109 Date Sampled: 9/16/2022 CONSTRUCTION	Assume	ed Spo	ecific Gra	vity:	= 2.7	70				Sou	irce of	f Sam	ple: TP-	2	Depth	2.0'-6.0'		
CONSTRUCTION	Remarks:						San	nple N	lumbe	ər: 2C								
CONSTRUCTION							-				Date	Sample	d: 9/16/2	2022				
														CON		•		-
CME MATERIALS													CME	MAT	ERIAI	LS		
PLATE B-5 ENGINEERS, INC.	PLATE	B-5												ENG	INEEF	RS, INC	8 Pa	

 Tested By:
 M. PONTONI
 Checked By:
 N. ANDERSON

A Si	Silver State 1135 Fi		Analytical Repor					
	ierra Environmental Monitoring (775) 8	NV 89502 57-2400 FAX: (888) 39 salabs.com	8-7002			order#: Reported:	22091388 10/11/2022	
Client:	CME-Construction Materials	Engineers, Inc			Sample	ed By: Clien	t	
Project Name:	3109/53 Mule Deer Ct./TP-5	5B 4'-5'						
PO #:	3109							
Laboratory Acc	editation Number: NV015/CA	A2990						
Laboratory ID	Client Sample II	D	Da	te/Time Sam	pled	Date Recei	ved	
22091388-01	TP - 5 5B 4'-5'		09/	/16/2022 12:0	00	9/28/2022		
Parameter	Method	Result	Units	PQL	Analyst	Date/Tin Analyze		
Sulfate	ASTM 1580C	< 0.02	%	0.02	AC	10/07/2022	10:54	

APPENDIX C

ASCE 7 Hazards Report

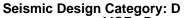

ASCE/SEI 7-16 Standard:

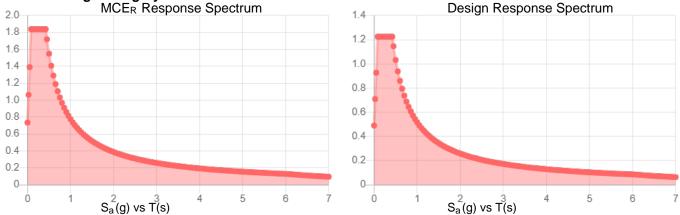
Latitude:

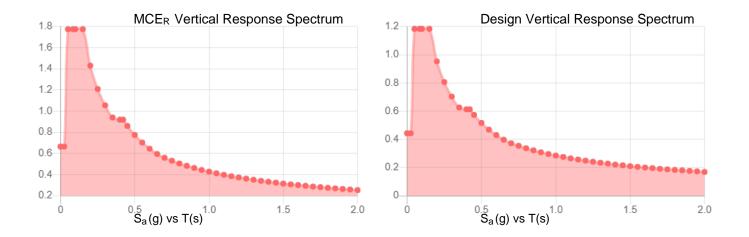
Risk Category: II

39.52099 Longitude: -119.9335 Elevation: 4854.23 ft (NAVD 88)

C - Very Dense Soil Class: Soil and Soft Rock






Site Soil Class:

Results:

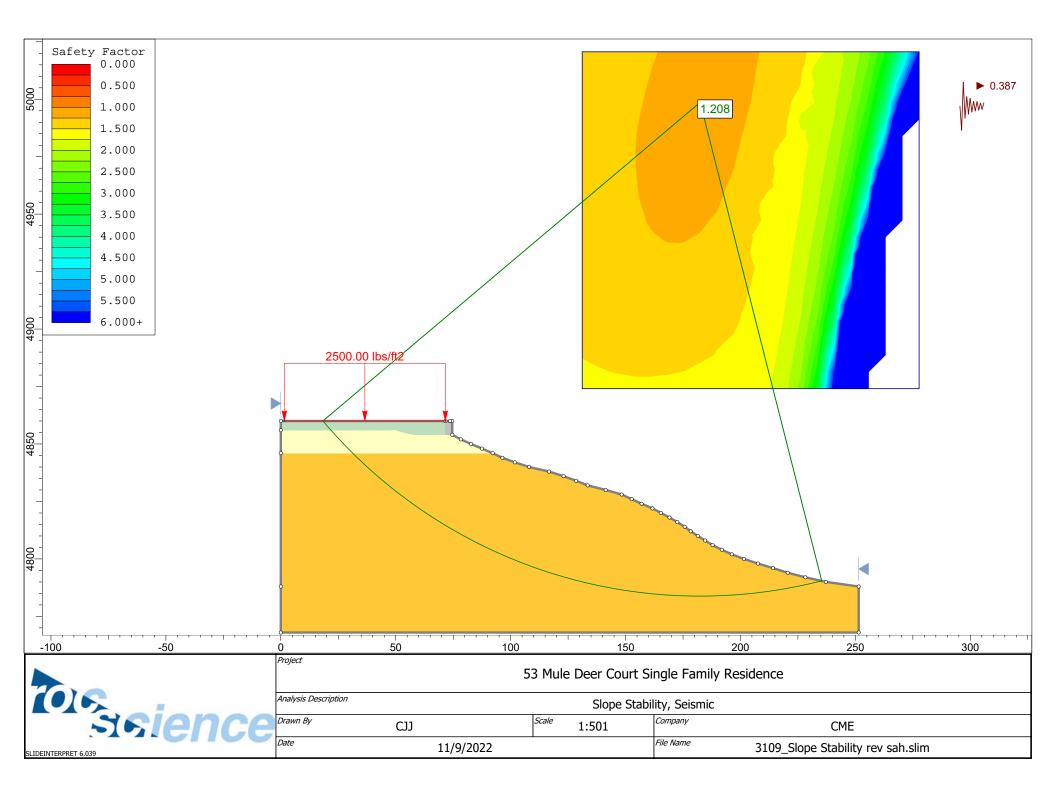
S _s :	1.532	S _{D1} :	0.516
S ₁ :	0.524	T _L :	6
F _a :	1.2	PGA :	0.646
F _v :	1.476	PGA M :	0.775
S _{MS} :	1.838	F _{PGA} :	1.2
S _{M1} :	0.774	l _e :	1
S _{DS} :	1.225	C _v :	1.206

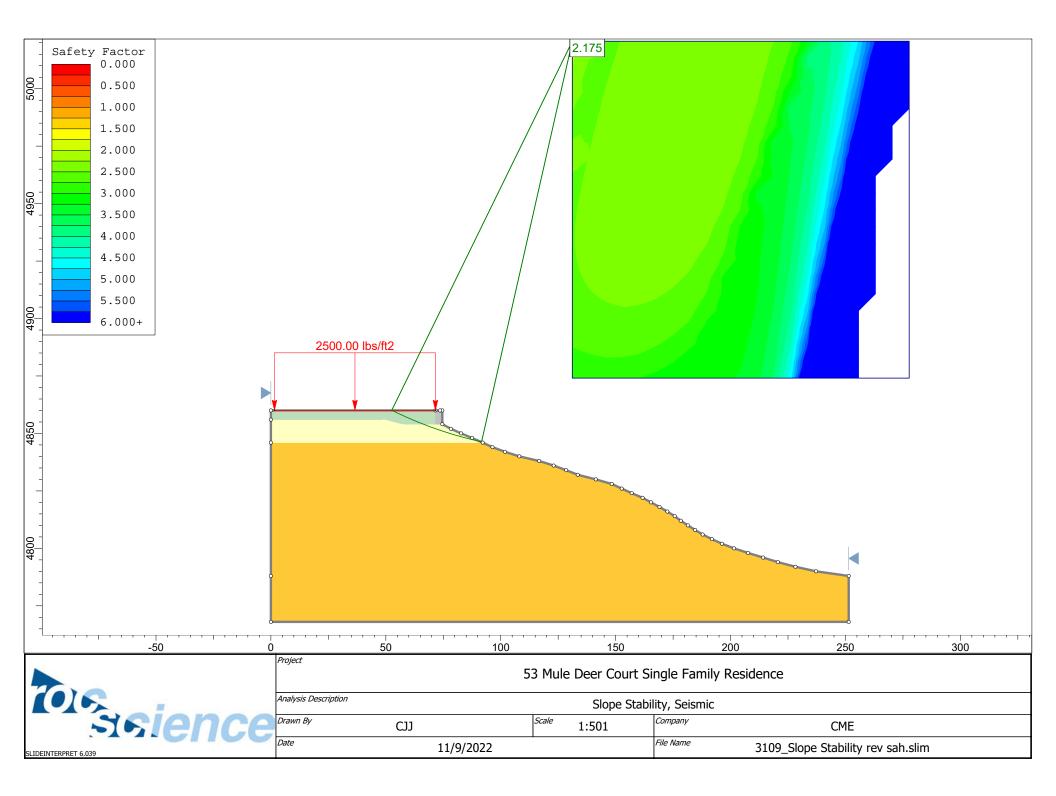
Data Accessed:

Mon Nov 21 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.


The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX D

