Appendix B

Civil Reports/Studies
Traffic Impact Report
Geotechnical Report
Acoustic Study (to be completed)

Civil \& Landscape Plan Set (full size sheets - 24"x 36")

C0 Title Sheet
C1 Existing Topography and Slope Map
C2 Preliminary Site and Utility Plan
C3 Preliminary Grading Plan
C4 Preliminary Cut Fill Map
C5 Preliminary Cross-Sections
L-1 Preliminary Landscape Plan
L-2 Landscape Buffer Detail and Cross-Sections
Preliminary Lighting Plan

KP INVESTMENTS NORTH

RENO, NV

APNS: 081-121-39, 081-121-43, 081-121-45, 081-121-46, 081-121-50, 081-121-51

Prepared for:
KP Investments, LLC
83 Scripps
Suite 210
Sacramento, CA 95825

Prepared by:

Kimley»)Horn

February 2022
192261000
Copyright © Kimley-Horn and Associates, Inc.

Kimley»)Horn

TRAFFIC IMPACT STUDY

FOR

KP INVESTMENTS NORTH

Prepared for:

KP Investments, LLC
83 Scripps
Suite 210
Sacramento, CA 95825

Prepared by:

Kimley-Horn and Associates, Inc.
7900 Rancharrah Parkway
Suite 100
Reno, NV 89511
775-787-7552

This document, together with the concepts and designs presented herein, as an instrument of senvice, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHom and Associates, Inc. shall be without liability to Kimley-Hom and Associates, Inc.
© February 2022
192261000

Kimley»>Horn

EXECUTIVE Summary

The purpose of this traffic study is to identify traffic generation characteristics of a proposed industrial development, identify potential traffic related impacts on the surrounding street network, and develop mitigation measures required for identified impacts.

The proposed KP Investments North industrial center is to be generally located south of Reno Park Boulevard and west of US 395. The project is on approximately 59.35 acres within APNs 081-121-39, 081-121-43, 081-121-45, 081-121-46, 081-121-50, 081-121-51 in Reno, Nevada. The project is anticipated to have four buildings with a total of $1,664,000$ square feet.

The Washoe County Scope of Study (included in Appendix A) dated December 10, 2021, identified five (5) intersections for full level of service (LOS) analysis:

- North Virginia Street and Village Parkway (Intersection \#1)
- US 395 Southbound Ramps at Village Parkway (Intersection \#2)
- US 395 Northbound Ramps at Village Parkway (Intersection \#3)
- North Virginia Street and White Lake Road/South Reno Park Boulevard (Intersection \#4)
- White Lake Road and South Reno Park Boulevard (Intersection \#5)

Regional access to the site is expected to be provided via US 395 and North Virginia Street. Primary access to the proposed development is expected to be provided by Reno Park Boulevard. Direct access to the development is planned to be provided by the east and south legs of White Lake Road and South Reno Park Boulevard (Intersection \#5).

Figure E-1 shows the locations of the key study intersections for the site plan provided in Appendix E.

Access to the site will be along South Reno Park Boulevard. Access to the western portion of the property will be provided by the west leg of White Lake Road and South Reno Park Boulevard (Intersection \#5) and access to the eastern portion of the property will be provided by the south leg of White Lake Road and South Reno Park Boulevard (Intersection \#5).

Upon completion of the project, KP Investments North is anticipated to generate 495 AM peak hour and 533 PM peak hour trips to the surrounding street network. Project traffic is anticipated to generate traffic volumes resulting in the following recommendations:

- The developer is recommended to install an R1-1 "STOP" sign with appropriate pavement markings for the eastbound approach to the existing South Reno Park Boulevard and White Lakes Road Intersection (\#5) per current MUTCD Guidelines.
- All on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to the current Manual on Uniform Traffic Control Devices (MUTCD), as applicable.
- The project is not anticipated to have significant impacts to the key study intersections and the surrounding street network.

Kimley»Horn

Table of Contents

EXECUTIVE Summary I

1. Introduction 1
2. EXISting Conditions 3
2.1. Study Area Intersections 3
2.2. Existing Land Uses 3
2.3. Existing Lane Configurations and Control 3
2.4. Existing Turning Movements 3
3. Future Conditions 7
3.1. Expected Lane Configuration and Control 7
3.2. 2023 Background Peak Hour Traffic Volumes 7
3.3. Project Trip Generation 8
3.4. Project Trip Distribution 8
3.5. Traffic Assignment 8
3.6. 2023 Background Plus Project Peak Hour Traffic Volumes 8
4. ANALYSIS 13
4.1. Analysis Methodology 13
4.2. Key Intersection Operational Analysis 13
5. CRASH Data Analysis 15
6. Recommendations 16

Kimley»"Horn

List of Figures

Figure E-1 - Project Access Drives and Study Area Intersections ii
Figure 1 - Vicinity Map 2
Figure 2 - Study Area 4
Figure 3-2022 Existing Lane Configuration and Control 5
Figure 4-2022 Existing Peak Hour Traffic Volumes 6
Figure 5 - Project Trip Distribution 9
Figure 6 - 2023 Background Plus Project Lane Configuration 10
Figure 7 - Project Traffic Assignment 11
Figure 8 - 2023 Background Plus Project Peak Hour Traffic Volumes 12
LIst of Tables
Table 1 - Peak Hour Turning Movement Count Dates 3
Table 2 - Project Trip Generation 8
Table 3 - Level of Service Definitions 13
Table 4 - Key Intersection Peak Hour LOS Results 14
Table 5 - Crash Data Summary 15

Kimley»Horn

List of Appendices

Appendix A Scope of Study
Appendix B Count Data
Appendix C Trip Generation Calculations
Appendix D Key Intersection Peak Hour LOS Calculations
Appendix E Site Plan

Kimley») Horn

1. Introduction

Kimley-Horn and Associates, Inc. has been retained by KP Investments to prepare a traffic impact study for a proposed industrial park development. The purpose of this traffic impact study is to identify traffic generation characteristics of the project, identify potential traffic related impacts on the local street system, and develop mitigation measures required for the identified impacts.

The proposed KP Investments North industrial center is to be generally located southeast of Reno Park Boulevard and west of US 395. The project is on approximately 59.35 acres within APNs 081-121-39, 081-121-43, 081-121-45, 081-121-46, 081-121-50, 081-121-51 in Reno, Nevada. The proposed project site is a vacant, undeveloped lot. The project is anticipated to have four buildings of industrial space.

Regional access to the site is expected to be provided via US 395 and North Virginia Street. Primary access to the proposed development is expected to be provided by Reno Park Boulevard. Direct access to the development is planned to be provided by the south and west legs of the intersection of South Reno Park Boulevard and White Lake Road (Intersection \#5).

A site plan for the proposed development is located in Appendix E. The project is anticipated to be completed in 2023. The location of the industrial development with respect to the City of Reno is shown on Figure 1.

Kimley»Horn

Figure 1 - Vicinity Map

Source: Esri

Kimley»Horn

2. Existing Conditions

This section of the report details existing conditions adjacent to the project site.

2.1. Study Area Intersections

The KP Investments Scope of Study (included in Appendix A) dated December 10, 2021 identified five (5) intersections for full level of service (LOS) analysis:

- North Virginia Street and Village Parkway (Intersection \#1)
- US 395 Southbound Ramps at Village Parkway (Intersection \#2)
- US 395 Northbound Ramps at Village Parkway (Intersection \#3)
- North Virginia Street and White Lake Road/South Reno Park Boulevard (Intersection \#4)
- White Lake Road and South Reno Park Boulevard (Intersection \#5)

2.2. Existing Land Uses

The location for the proposed industrial park is currently a vacant plot of land. The proposed project area has a railroad right of way running between the proposed buildings. The area surrounding the proposed industrial park is comprised of residential land uses and undeveloped land. The location of the project site, study area intersections, existing bus stop locations, and existing land uses are shown on Figure 2.

2.3. Existing Lane Configurations and Control

Regional access to KP Investments North is expected to be provided via US 395. Primary access to the proposed development is expected to be provided by Village Parkway, North Virginia Street, and South Reno Park Boulevard. Existing speed limits, lane configurations, and traffic control at the time of this study are illustrated in Figure 3.

2.4. Existing Turning Movements

Existing AM and PM peak hour turning movement data was field counted, as summarized in Table 1, for the study area intersections identified in Section 2.1.

Table 1 - Peak Hour Turning Movement Count Dates

Intersection Number	Intersection	Count Date
1	North Virginia Street and Village Parkway	Thursday, January $6^{\text {th }}, 2022$
2	US 395 Southbound Ramps and Village Parkway	Thursday, January $6^{\text {th }}, 2022$
3	US 395 Northbound Ramps and Village Parkway	Thursday, January 6 ${ }^{\text {th }}, 2022$
4	North Virginia Street and South Reno Park Boulevard	Thursday, January 6 ${ }^{\text {th }}, 2022$
5	South Reno Park Boulevard and White Lake Road	Thursday, January $6^{\text {th }}, 2022$

A summary of the peak hour count data at the study area intersections is shown in Figure 4 and the count data sheets are provided in Appendix B.

(1) Study Area Key Intersection	
2	Roadway Speed Limit
25	Stop Controlled Approach
STOP	

SOURCE: NEARMAP
KP INVESTMENTS NORTH
2022 EXISTING PEAK HOUR TRAFFIC VOLUMES

FIGURE 4
Kimley»Hōrn

Kimley»)Horn

3. Future Conditions

This section of the report details conditions that are expected in the future at the time KP Investments North is anticipated to be completed.

3.1. Expected Lane Configuration and Control

Regional access to KP Investments North is expected to be provided via US 395. Primary access to the proposed development is expected to be provided by North Virginia Street and South Reno Park Boulevard. Expected speed limits, lane configuration, and traffic control in 2023 are expected remain the same as the 2022 existing speed limits, lane configuration and traffic control illustrated in Figure 3.

3.2. 2023 Background Peak Hour Traffic Volumes

To accurately determine the impact of project traffic, it is necessary to establish future baseline traffic volumes along roadways in the vicinity of the proposed development. Due to the relatively undeveloped nature of the project vicinity, KP Investments North is considered to represent the growth in the area surrounding the project site. The 2023 background peak hour traffic volumes are expected to be the same as the existing volumes illustrated in Figure 4.

Kimley»Horn

3.3. Project Trip Generation

This study calculated trip generation based on data that is provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition (ITE Land Use Codes 140 Manufacturing and 150 - Warehousing). The ITE Trip Generation Manual informational report is a standard reference used by jurisdictions throughout the country and is based on actual trip generation studies performed at numerous locations in areas of various populations.

The proposed development is anticipated to generate 495 AM and 533 PM peak hour trips during the peak periods on the surrounding street network as summarized in Table 2.

Table 2 - Project Trip Generation

ITE Code	Description	Size	AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
140	Manufacturing	416,000 SF	215	68	283	95	213	308
150	Warehousing	1,248,000 SF	163	49	212	63	162	225
Total			378	117	495	158	375	533

Source: ITE Trip Generation Manual, $11^{\text {th }}$ Edition

3.4. Project Trip Distribution

The study area street network characteristics, including the existing traffic patterns, expected street network, and access to regional facilities were used to determine the distribution of sitegenerated traffic. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source direction. Figure 5 shows the project trip distribution at the study area intersections and project access drives.

3.5. Traffic Assignment

Assignment of project traffic was obtained by applying the developed trip distribution in Figure 5 to the estimated traffic generation in Table 2. Project traffic assignment is illustrated in Figure 6 for the study area intersection and proposed project access drives. The entering and exiting trips at the project access drives are rounded to the nearest whole number when assigned. Therefore, the number of trips assigned to the project driveways in Figure 6 may differ slightly from the total trip generation.

3.6. 2023 Background Plus Project Peak Hour Traffic Volumes

It is anticipated that this project will represent the extent of growth in this area up to construction. The project generated traffic volumes in Figure 6 were added to the 2023 background traffic volumes (identical to existing volumes in Figure 4) to represent estimated traffic conditions for full project development in 2023. The 2023 background plus project total traffic volumes for the study area intersections and project access drives are illustrated in Figure 7.

SOURCE: NEARMAP
KP INVESTMENTS NORTH
2023 BACKGROUND PLUS PROJECT LANE CONFIGURATION AND CONTROL

FIGURE 6
Kimley") Hörn

Kimley»Horn

4. Analysis

Traffic analyses for 2022 existing, and 2023 background plus project scenarios were conducted at the identified key intersection and project access drives to determine possible existing and/or future deficiencies in the street network. It is anticipated that this project will represent the extent of growth in this area up to construction.

4.1. Analysis Methodology

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections presented in the Transportation Research Board's "Highway Capacity Manual" $6^{\text {th }}$ Edition (HCM). Under the unsignalized analysis, the level of service (LOS) for a twoway stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for a signalized or four-way stop controlled intersection is defined for the intersection as a whole. Table 3 shows the definition of LOS for intersections.

Table 3 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Definitions provided from the Highway Capacity Manual, $6^{\text {th }}$ Edition, Transportation Research Board.
Synchro 11 was used to analyze the study area intersections and project access drives for LOS. Synchro is an interactive computer program that enables planners and engineers to forecast the traffic impacts of new developments; conduct area-wide traffic forecasting studies; test different mitigation measures, and compare different traffic scenarios. Synchro 11 utilizes HCM 6 methodology to analyze intersection delay and LOS.

4.2. Key Intersection Operational Analysis

Calculations for the LOS at the key intersections are provided in Appendix D. All existing, background, and background plus project analyses are based on the lane geometry and intersection control shown in Figure 3. The results of the Key Intersection LOS Analysis are shown in Table 4.

Kimley»Horn

Table 4 - Key Intersection Peak Hour LOS Results

Int. No	Intersection	2022 Existing		2023 Background + Project	
		AM	PM	AM	PM
		Delay (LOS)	Delay (LOS)	Delay (LOS)	Delay (LOS)
1	N Virginia Street/ Village Parkway One-Way Stop Controlled Southbound Left West Bound Left/Right	$\begin{aligned} & 7.3(\mathrm{~A} \\ & 9(\mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{aligned} & 7.4(\mathrm{~A}) \\ & 9.1(\mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{gathered} 15.2(\mathrm{C}) \\ 7.6(\mathrm{~A}) \\ \hline \end{gathered}$	$\begin{gathered} 16.9(\mathrm{C}) \\ 8.7(\mathrm{~A}) \\ \hline \end{gathered}$
2	Village Parkway/ US 395 Southbound Ramps One-Way Stop Controlled Southbound Left/Right/Through Westbound Left	$\begin{aligned} & 22.8 \text { (C) } \\ & 8.6 \text { (A) } \end{aligned}$	$\begin{aligned} & 13.8 \text { (B) } \\ & 7.9(\mathrm{~A}) \end{aligned}$	$\begin{gathered} 23.6(\mathrm{C}) \\ 9(\mathrm{~A}) \end{gathered}$	$\begin{aligned} & 21(C) \\ & 9.5(A) \\ & \hline \end{aligned}$
3	Village Parkway/ US 395 Northbound Ramps All-Way Stop Controlled	14.7 (B)	12.3 (B)	25.2 (D)	22.8 (C)
4	North Virginia Street/South Reno Park Boulevard One-Way Stop Controlled Northbound Left Eastbound Left/Right	$\begin{gathered} 0(\mathrm{~A}) \\ 8.7(\mathrm{~A}) \end{gathered}$	$\begin{gathered} 7.3(\mathrm{~A}) \\ 9(\mathrm{~A}) \\ \hline \end{gathered}$	$\begin{gathered} 0(\mathrm{~A}) \\ 13.9(\mathrm{~B}) \\ \hline \end{gathered}$	$\begin{gathered} 7.8(\mathrm{~A}) \\ 66.9(\mathrm{~F}) \end{gathered}$
5	South Reno Boulevard/White Lakes Road One-Way Stop Controlled Southbound Left/Right/Through Eastbound Left/Right/Through Westbound Left/Right/Through Northbound Left/Right/Through	$\begin{aligned} & 0 \text { (A) } \\ & 0 \text { (A) } \\ & 0 \text { (A) } \\ & 0 \text { (A) } \end{aligned}$	$\begin{aligned} & 0 \text { (A) } \\ & 0 \text { (A) } \\ & 0 \text { (A) } \\ & 0 \text { (A) } \end{aligned}$	$\begin{gathered} 7.4(\mathrm{~A}) \\ 14.1(\mathrm{~B}) \\ 8.7(\mathrm{~A}) \\ 0(\mathrm{~A}) \\ \hline \end{gathered}$	$\begin{gathered} 7.7(\mathrm{~A}) \\ 30.9(\mathrm{D}) \\ 9.6(\mathrm{~A}) \\ 0(\mathrm{~A}) \\ \hline \end{gathered}$

The key study area intersections are expected to operate at acceptable LOS (as defined by the Washoe County Development Code) in all scenarios with the exception of the following:

- Village Parkway and US 395 Northbound Ramps Intersection (\#3) in the 2023 background plus project AM peak hour
- North Virginia Street and South Reno Park Boulevard Intersection (\#4) Eastbound Approach in the 2023 background plus project PM peak hour
- South Reno Park Boulevard and White Lakes Road Intersection (\#5) Eastbound Approach in the 2023 background plus project PM peak hour.

It is anticipated that there will be significant delay on the eastbound approach for Intersection \#4 in the PM peak hour. If desired, removal of the R1-1 "STOP" signs on the eastbound and westbound approaches for the Village Parkway and US 95 Northbound Ramps Intersection (\#3) would help achieve an acceptable LOS.

Kimley») Horn

5. Crash Data Analysis

Crash data for the five (5) study area intersections was obtained from the Nevada Department of Transportation (NDOT) Safety Engineering Division for the three-year period from January 1, 2017 - December 31, 2019. The crash data is summarized in Table 5.

Table 5 - Crash Data Summary

Intersection	Total Crashes	Property Damage Only	Injury	Fatal
North Virginia Street and Village Parkway	0	$0(0 \%)$	$0(0 \%)$	$0(0 \%)$
US 395 Southbound Ramps and Village Parkway	1	$0(0 \%)$	$1(100 \%)$	$0(0 \%)$
US 395 Northbound Ramps and Village Parkway	1	$1(100 \%)$	$0(0 \%)$	$0(0 \%)$
North Virginia Street and South Reno Park Boulevard	0	$0(0 \%)$	$0(0 \%)$	$0(0 \%)$
South Reno Park Boulevard and White Lake Road	0	$0(0 \%)$	$0(0 \%)$	$0(0 \%)$
	$\mathbf{2}$	$\mathbf{1 (5 0 \%)}$	$\mathbf{1 (5 0 \%)}$	$0(0 \%)$

A total of 2 crashes were recorded at the study area intersections during the three-year period. Those 2 crashes resulted in 1 injury crashes (50\%), and 1 property damage only crashes (50\%). No fatal crashes were reported for the study area intersections.

Kimley»"Horn

6. Recommendations

The KP Investments North traffic is anticipated to be accommodated on the street network expected to exist in the background year of 2023. KP Investments North is anticipated to generate traffic volumes resulting in the following recommendations:

- The developer is recommended to install an R1-1 "STOP" sign with appropriate pavement markings for the eastbound approach to the existing South Reno Park Boulevard and White Lakes Road Intersection (\#5) per current MUTCD Guidelines.
- All on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to the current Manual on Uniform Traffic Control Devices (MUTCD), as applicable.
- The project is not anticipated to have significant impacts to the key study intersections and the surrounding street network.

Kimley»Horn

APPENDIX A

Scope of Study

Schaffner, Perry

From: Giacomin, David
Sent: Friday, January 7, 2022 11:40 AM
To:
Schaffner, Perry
Subject:
FW: Project Max Traffic Study Scope Request

Scope from Washoe County and NDOT.
David J Giacomin, P.E., PTOE, RSP ${ }_{1}$
Kimley-Horn | 7900 Rancharrah Parkway, Suite 100, Reno, NV 89511
Direct: (775) 200-1981 | Mobile: (651) 497-8220
From: Wolfson, Alexander <AW olfson@dot.nv.gov>
Sent: Friday, December 10, 2021 9:28 AM
To: Fink, M itchell $\langle\mathrm{M}$ Fink@ washoecounty.gov>; Giacomin, David \&david.giacomin@kimley-horn.com>
Subject: RE: Project Max Traffic Study Scope Request
Hi David,
To add to Mitch's scope, we'll be looking for analysis of the Village Pkwy/US-395 ramp intersections and also the Village Pkwy/FRWA23 intersection. Given the proximity of the Village Pkwy/FRWA23 intersection to the US-395 SB ramps, NDOT will be looking for queueing analysis to see how often traffic waiting at the stop sign backs into the US-395 SB ramps intersection. It may be worth considering treating those two intersections as one. I have a feeling that a mitigation will need to be proposed for that situation.

Thank you,
Alex Wolfson, P.E., PTOE, RSP1
Engineering M anager - District 2
Nevada Department of Transportation
o 775.834.8304 | m 775.301.8150
e awolfson@dot.nv.gov | w dot.nv.gov

From: Fink, M itchell <M Fink@washoecounty.gov>
Sent: Thursday, December 9, 2021 11:22 AM
To: Giacomin, David david.giacomin@kimley-horn.com
Cc: Wolfson, Alexander AWolfson@dot.nv.gov
Subject: RE: Project Max Traffic Study Scope Request
Hi David,
From the attached project site map that you sent over it appears that the ingress and egress to the project will be on the existing Reno Park Blvd. to FRWA23 to US 395N? As you are probably aware we would not allow the warehouse traffic to divert through the local residential streets. Please provide your intersection recommendations and I'm sure Alex will have some requirements as well.

Thank you.

Mitchell Fink, P.E. | Licensed Engineer
Community Services Department | Engineering \& Capital Projects Division
mfink@ washoecounty.gov/ Office: 775.328.2050
1001 E. $9^{\text {th }}$ Street, Reno, NV 89512
(-1) $\boldsymbol{O}^{(1)}$
*Have some kudos to share about a Community Services Department employee or experience?
email; csdallstars@ washoecounty.us
The content of this email is the confidential property of Washoe County and should not be copied, modified, retransmitted, or used for any purpose except with written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Giacomin, David david.giacomin@kimley-horn.com
Sent: Wednesday, December 8, 2021 10:58 AM
To: Fink, M itchell $\langle M$ Fink@ washoecounty.gov>
Cc: Wolfson, Alexander <AWolfson@ dot.nv.gov>
Subject: Project Max Traffic Study Scope Request
[NOTICE: This message originated outside of Washoe County -- DO NOT CLICK on links or open attachments unless you are sure the content is safe.]

Mitch,
I have another request for a traffic study scope for you. This is a larger project. I am attaching a copy of the conceptual site plan we have been given.

Please let me know if you would like me to suggest a set of intersections for this one. Feel free to give me a call anytime today. I am copying Alex Wolfson from NDOT as well incase Alex has any input regarding this one.

Thank you,
David J Giacomin, P.E., PTOE, RSP1
Kimley-Horn | 7900 Rancharrah Parkway, Suite 100, Reno, NV 89511
Direct: (775) 200-1981 | Mobile: (651) 497-8220
Connect with us: Twitter I Linkedln I Facebook I YouTube

Kimley»Horn

APPENDIX B Count Data

N Virginia St and Village Pkwy - TMC
Thu Jan 6, 2022
Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913836, Location: 39.667427, -119.99741

Leg Direction		$\begin{aligned} & \text { N Virginia St } \\ & \text { Northbound } \end{aligned}$				N Virginia St Southbound				Village Pkwy Westbound				
Time		R	T	U	App	T	L	U	App	R	L	U	App	Int
	2022-01-06 5:00AM	1	0	0	1	1	9	0	10	12	0	0	12	23
	5:15AM	1	0	0	1	0	10	0	10	12	1	0	13	24
	5:30AM	1	0	0	1	1	9	0	10	10	2	0	12	23
	5:45AM	0	0	0	0	0	3	0	3	6	0	0	6	9
	Hourly Total	3	0	0	3	2	31	0	33	40	3	0	43	79
	6:00AM	5	0	0	5	1	7	0	8	6	1	0	7	20
	6:15AM	2	0	0	2	0	4	0	4	5	4	0	9	15
	6:30AM	4	0	0	4	1	10	0	11	2	6	1	9	24
	6:45AM	6	0	0	6	0	4	0	4	4	6	1	11	21
	Hourly Total	17	0	0	17	2	25	0	27	17	17	2	36	80
	7:00AM	6	0	0	6	0	15	0	15	7	0	0	7	28
	7:15AM	5	1	0	6	0	8	0	8	7	3	1	11	25
	7:30AM	3	0	0	3	0	7	0	7	4	0	0	4	14
	7:45AM	5	1	0	6	0	5	0	5	5	1	0	6	17
	Hourly Total	19	2	0	21	0	35	0	35	23	4	1	28	84
	8:00AM	2	1	0	3	0	8	0	8	3	1	0	4	15
	8:15AM	7	0	0	7	1	5	0	6	7	2	1	10	23
	8:30AM	7	0	0	7	0	6	0	6	5	2	0	7	20
	8:45AM	3	0	0	3	1	10	0	11	8	0	0	8	22
	Hourly Total	19	1	0	20	2	29	0	31	23	5	1	29	80
	3:00PM	3	1	0	4	2	16	0	18	13	4	0	17	39
	3:15PM	14	2	0	16	0	16	0	16	13	8	0	21	53
	3:30PM	4	3	0	7	2	19	0	21	16	3	0	19	47
	3:45PM	4	0	0	4	1	23	0	24	17	4	0	21	49
	Hourly Total	25	6	0	31	5	74	0	79	59	19	0	78	188
	4:00PM	3	2	0	5	1	19	0	20	18	2	0	20	45
	4:15PM	4	2	0	6	2	26	0	28	19	4	0	23	57
	4:30PM	4	1	0	5	1	21	0	22	19	4	1	24	51
	4:45PM	3	4	0	7	3	15	0	18	19	5	0	24	49
	Hourly Total	14	9	0	23	7	81	0	88	75	15	1	91	202
	5:00PM	1	0	0	1	2	16	0	18	19	2	0	21	40
	5:15PM	2	0	0	2	0	14	0	14	14	2	0	16	32
	5:30PM	0	3	0	3	2	25	0	27	16	5	0	21	51
	5:45PM	3	2	0	5	4	24	0	28	8	1	0	9	42
	Hourly Total	6	5	0	11	8	79	0	87	57	10	0	67	165
	6:00PM	2	1	0	3	1	16	0	17	14	4	0	18	38
	6:15PM	0	2	0	2	1	15	0	16	9	2	0	11	29
	6:30PM	3	3	0	6	2	7	0	9	10	4	0	14	29
	6:45PM	1	0	0	1	0	18	0	18	11	4	0	15	34
	Hourly Total	6	6	0	12	4	56	0	60	44	14	0	58	130
	Total	109	29	0	138	30	410	0	440	338	87	5	430	1008
	\% Approach	79.0\%	21.0\%	0\%	-	6.8\%	93.2\%	0\%	-	78.6\%	20.2\%	1.2\%	-	-
	\% Total	10.8\%	2.9\%	0\%	13.7\%	3.0\%	40.7\%	0\%	43.7\%	33.5\%	8.6\%	0.5\%	42.7\%	-
	Lights	98	28	0	126	28	397	0	425	326	78	5	409	960
	\% Lights	89.9\%	96.6\%	0\%	91.3\%	93.3\%	96.8\%	0\%	96.6\%	96.4\%	89.7\%	100\%	95.1\%	95.2\%
	Articulated Trucks	3	0	0	3	0	7	0	7	5	4	0	9	19
	\% Articulated Trucks	2.8\%	0\%	0\%	2.2\%	0\%	1.7\%	0\%	1.6\%	1.5\%	4.6\%	0\%	2.1\%	1.9\%
	Buses and Single-Unit Trucks	8	1	0	9	2	6	0	8	7	5	0	12	29
	\% Buses and Single-Unit Trucks	7.3\%	3.4\%	0\%	6.5\%	6.7\%	1.5\%	0\%	1.8\%	2.1\%	5.7\%	0\%	2.8\%	2.9\%

[^0]Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913836, Location: 39.667427, -119.99741

Out: 117 In: 138
Total: 255
[S] N Virginia St

Provided by: Kimley-Horn and Associates, Inc. 767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US

AM Peak (6:30 AM - 7:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913836, Location: 39.667427, -119.99741

[^1]AM Peak (6:30 AM - 7:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913836, Location: 39.667427, -119.99741
[N] N Virginia St
Total: 59
In: 38 Out: 21
$\rightarrow \quad \hat{m}$

Out: 16 In: 22
Total: 38
[S] N Virginia St

PM Peak (3:45 PM - 4:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913836, Location: 39.667427, -119.99741

Leg Direction		N Virginia St Northbound				N Virginia St Southbound				Village Pkwy Westbound				
Time		R	T	U	App	T	L	U	App	R	L	U	App	Int
	2022-01-06 3:45PM	4	0	0	4	1	23	0	24	17	4	0	21	49
	4:00PM	3	2	0	5	1	19	0	20	18	2	0	20	45
	4:15PM	4	2	0	6	2	26	0	28	19	4	0	23	57
	4:30PM	4	1	0	5	1	21	0	22	19	4	1	24	51
	Total	15	5	0	20	5	89	0	94	73	14	1	88	202
	\% Approach	75.0\%	25.0\%	0\%	-	5.3\%	94.7\%	0\%	-	83.0\%	15.9\%	1.1\%	-	-
	\% Total	7.4\%	2.5\%	0\%	9.9\%	2.5\%	44.1\%	0\%	46.5\%	36.1\%	6.9\%	0.5\%	43.6\%	
	PHF	0.938	0.625	-	0.833	0.625	0.856	-	0.839	0.961	0.875	0.250	0.917	0.886
	Lights	13	5	0	18	5	87	0	92	67	14	1	82	192
	\% Lights	86.7\%	100\%	0\%	90.0\%	100\%	97.8\%	0\%	97.9\%	91.8\%	100\%	100\%	93.2\%	95.0\%
	Articulated Trucks	2	0	0	2	0	0	0	0	2	0	0	2	4
	\% Articulated Trucks	13.3\%	0\%	0\%	10.0\%	0\%	0\%	0\%	0\%	2.7\%	0\%	0\%	2.3\%	2.0\%
	Buses and Single-Unit Trucks	0	0	0	0	0	2	0	2	4	0	0	4	6
	\% Buses and Single-Unit Trucks	0\%	0\%	0\%	0\%	0\%	2.2\%	0\%	2.1\%	5.5\%	0\%	0\%	4.5\%	3.0\%

[^2]PM Peak (3:45 PM - 4:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913836, Location: 39.667427, -119.99741

Out: 19 In: 20
Total: 39
[S] N Virginia St

395 SB ramps and Village Pkwy - TMC
Thu Jan 6, 2022
Provided by: Kimley-Horn and Associates, Inc. 767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US

Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913837, Location: 39.667615, -119.997055

Leg Direction	395 SB On ramp Northbound	395 SB Off ramp Southbound					Village Pkwy Eastbound					Village Pkwy Westbound					
Time	$\begin{array}{llll}\text { R } & \text { T } & \text { L } & \text { U App }\end{array}$	R	T	L	U	App	R	T	L		App	R	T	L	U	App	Int
2022-01-06 5:00AM	0 0 0 0 0 0 0	0	1	0	0	1	4	6	0	0	10	0	12	34	0	46	57
5:15AM	0 0 0 0 0 0 0	0	0	1	0	1	4	7	0	0	11	0	13	54	0	67	79
5:30AM	0 0 0 0 0 0	0	0	0	0	0	4	6	0	0	10	0	12	83	0	95	105
5:45AM	0 0 0 0 0 0 0	0	0	0	0	0	2	1	0	0	3	0	6	62	0	68	71
Hourly Total	0 0 0 0 00	0	1	1	0	2	14	20	0	0	34	0	43	233	0	276	312
6:00AM	0 0 0 0 0 0 0	2	0	0	0	2	7	5	0	0	12	0	5	93	0	98	112
6:15AM	0 0 0 0 0 0 0	0	0	0	0	0	3	4	0	0	7	0	9	95	0	104	111
6:30AM	0 0 0 0 0 0 0	3	1	1	0	5	14	1	0	0	15	0	6	92	0	98	118
6:45AM	0 0 0 0 0 0 00	0	0	5	0	5	4	7	0	0	11	0	12	93	0	105	121
Hourly Total	0 0 00	5	1	6	0	12	28	17	0	0	45	0	32	373	0	405	462
7:00AM	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	2	1	1	0	4	13	9	0	0	22	0	6	112	0	118	144
7:15AM	0 0 0 0 0 0 0	0	0	0	0	0	8	6	0	0	14	0	10	132	0	142	156
7:30AM	0 0 0 0 0 0 0	0	0	1	0	1	6	4	0	0	10	0	4	94	0	98	109
7:45AM	0 0 0 0 00	1	0	0	0	1	7	3	0	0	10	0	5	84	0	89	100
Hourly Total		3	1	2	0	6	34	22	0	0	56	0	25	422	0	447	509
8:00AM	0 0 0 0 0 0 0	0	0	1	0	1	5	5	0	0	10	0	4	74	0	78	89
8:15AM	0 0 0 0 0 0 0	0	0	0	0	0	10	3	0	0	13	0	9	60	0	69	82
8:30AM	0 0 0 0 0 0 0	0	0	1	0	1	6	8	0	0	14	1	7	66	0	74	89
8:45AM	0 0 0 0 0 0 0	1	0	1	0	2	9	3	0	0	12	0	7	61	0	68	82
Hourly Total	0 0 0 0 0 0 0	1	0	3	0	4	30	19	0	0	49	1	27	261	0	289	342
3:00PM	0 0 0 0 0 0 0	0	0	2	0	2	4	15	0	0	19	0	17	48	0	65	86
3:15PM	0 0 0 0 0 0 0	3	0	8	0	11	14	17	0	0	31	0	17	37	0	54	96
3:30PM		3	2	1	0	6	12	12	0	0	24	1	16	40	0	57	87
3:45PM	0 0 0 0 0 0 0	0	0	4	0	4	5	22	0	0	27	0	21	54	0	75	106
Hourly Total	0 0 00	6	2	15	0	23	35	66	0	0	101	1	71	179	0	251	375
4:00PM	0 0 0 0 0 0 0	3	3	5	0	11	13	9	0	0	22	0	18	48	0	66	99
4:15PM	0 0 0 0 0000000	4	0	4	0	8	10	20	0	0	30	0	18	43	0	61	99
4:30PM	0 0 0 0 0 0 0	1	0	11	0	12	12	13	0	0	25	0	23	50	0	73	110
4:45PM	0 0 0 0 0 0 0	0	0	4	0	4	3	16	0	0	19	0	24	53	0	77	100
Hourly Total	0 0 $\quad 0$	8	3	24	0	35	38	58	0	0	96	0	83	194	0	277	408
5:00PM	0 0 0 0 0000000	0	0	4	0	4	2	15	0	0	17	0	21	38	0	59	80
5:15PM	0 0 0 0 0 0 0	0	0	4	0	4	5	12	0	0	17	0	15	43	0	58	79
5:30PM	0 0 0 0 0 0 0	2	0	15	0	17	11	14	0	0	25	0	19	28	0	47	89
5:45PM	0 0 0 0 0 0 0	0	0	19	0	19	10	17	0	0	27	0	9	39	0	48	94
Hourly Total	0 0 00000000	2	0	42	0	44	28	58	0	0	86	0	64	148	0	212	342
6:00PM	0 0 0 0 0 0 0	1	0	5	0	6	6	12	0	0	18	0	16	32	0	48	72
6:15PM	0 0 0 0 0 0 0	0	0	3	0	3	4	10	0	0	14	0	11	32	0	43	60
6:30PM	0 0 0 0 0 0 0	0	0	2	0	2	4	6	0	0	10	0	14	25	0	39	51
6:45PM	0 0 0 0 0 0 00	0	0	3	0	3	4	15	0	0	19	0	14	19	0	33	55
Hourly Total	0	1	0	13	0	14	18	43	0	0	61	0	55	108	0	163	238
Total	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	26	8	106	0	140	225	303	0	0	528	2	400	1918	0	2320	2988
\% Approach	0\% 0\% 0\% 0\%	18.6\%	5.7\%	75.7\%	0\%	-	42.6\%	57.4\%	0\%	0\%	-	0.1\%	17.2\%	82.7\%	0\%	-	-
\% Total	0\% 0\% 0\% 0\% 0\%	0.9\%	0.3\%	3.5\%	0\%	4.7\%	7.5\%	10.1\%	0\%	0\%	17.7\%	0.1\%	13.4\%	64.2\%	0\%	77.6\%	-
Lights	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	19	8	105	0	132	211	292	0	0	503	2	387	1882	0	2271	2906
\% Lights	0\% 0\% 0\% 0\% -	73.1\%	100\%	99.1\%	0\%	94.3\%	93.8\%	96.4\%	0\%	0\%	95.3\%	100\%	96.8\%	98.1\%	0\%	97.9\%	97.3\%
Articulated Trucks	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	2	0	0	0	2	9	3	0	0	12	0	5	2	0	7	21
\% Articulated Trucks	0\% 0\% 0\% 0\%	7.7\%	0\%	0\%	0\%	1.4\%	4.0\%	1.0\%	0\%	0\%	2.3\%	0\%	1.3\%	0.1\%	0\%	0.3\%	0.7\%
Buses and Single-Unit Trucks	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	5	0	1		6	5	8	0	0	13	0	8	34	0	42	61
\% Buses and Single-Unit Trucks	0\% 0\% 0\% 0\%	19.2\%	0\%	0.9\%	0\%	4.3\%	2.2\%	2.6\%	0\%	0\%	2.5\%	0\%	2.0\%	1.8\%	0\%	1.8\%	2.0\%

[^3]Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913837, Location: 39.667615, -119.997055
[N] 395 SB Off ramp
Total: 142 In: 140 Out: 2

Out: 2151
In: 0
Total: 2151
[S] 395 SB On ramp

AM Peak (6:30 AM - 7:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913837, Location: 39.667615, -119.997055

[^4]AM Peak (6:30 AM - 7:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913837, Location: 39.667615, -119.997055
[N] 395 SB Off ramp
Total: 14
In: 14 Out: 0

Out: 470
In: 0
Total: 470
[S] 395 SB On ramp

PM Peak (3:45 PM - 4:45 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913837, Location: 39.667615, -119.997055

Leg Direction	395 SB On ramp Northbound	395 SB Off ramp Southbound				Village Pkwy Eastbound					Village Pkwy Westbound					
Time	R T \quad L U App	R	T	L U	App	R	T	L	U	App	R	T	L	U	App	Int
2022-01-06 3:45PM	$0{ }_{0} 00$	0	0	40	4	5	22	0	0	27	0	21	54	0	75	106
4:00PM	0	3	3	50	11	13	9	0	0	22	0	18	48	0	66	99
4:15PM	$0{ }_{0} 00$	4	0	40	8	10	20	0	0	30	0	18	43	0	61	99
4:30PM	0	1	0	110	12	12	13	0	0	25	0	23	50	0	73	110
Total	0	8	3	240	35	40	64	0	0	104	0	80	195	0	275	414
\% Approach	0\% 0\% 0\% 0\%	22.9\%	8.6\%	68.6\% 0\%	-	38.5\%	61.5\%		0\%		0\%	29.1\%	70.9\%	0\%		
\% Total	0\% 0\% 0\% 0\% 0\%	1.9\%	0.7\%	5.8\% 0\%	8.5\%	9.7\%	15.5\%	0\%	0\%	25.1\%	0\%	19.3\%	47.1\%	0\%	66.4\%	
PHF	- - - - -	0.500	0.250	0.545	0.729	0.769	0.727	-	-	0.867	-	0.870	0.903	-	0.917	0.941
Lights	0	6	3	240	33	37	63	0	0	100	0	76	188	0	264	397
\% Lights	0\% 0\% 0\% 0\%	75.0\%	100\%	100\% 0\%	94.3\%	92.5\%	98.4\%	0\%	0\%	96.2\%	0\%	95.0\%	96.4\%	0\%	96.0\%	95.9\%
Articulated Trucks	0	1	0	$0 \quad 0$	1	1	1	0	0	2	0	1	0	0	1	4
\% Articulated Trucks	0\% 0\% 0\% 0\%	12.5\%	0\%	0\% 0\%	2.9\%	2.5\%	1.6\%	0\%	0\%	1.9\%	0\%	1.3\%	0\%	0\%	0.4\%	1.0\%
Buses and Single-Unit Trucks	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	1	0	$0 \quad 0$	1	2	0	0	0	2	0	3	7	0	10	13
\% Buses and Single-Unit Trucks	0\% 0\% 0\% 0\%	12.5\%	0\%	0\% 0\%	2.9\%	5.0\%	0\%		0\%	1.9\%	0\%	3.8\%	3.6\%	0\%	3.6\%	3.1\%

[^5]PM Peak (3:45 PM - 4:45 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913837, Location: 39.667615, -119.997055
[N] 395 SB Off ramp
Total: 35
In: 35 Out: 0

Out: 238
In: 0
Total: 238
[S] 395 SB On ramp

395 NB ramps and Village Pkwy - TMC
Thu Jan 6, 2022
Provided by: Kimley-Horn and Associates, Inc. 767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US

Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913838, Location: 39.668263, -119.995779

Leg Direction	395 NB Off ramp Northbound					395 NB On ramp Southbound					Village Pkwy Eastbound					Village Pkwy Westbound					
Time	R	T	L	U	App		R T	L	U		R	T	L	U	App	R	T	L	U	App	Int
2022-01-06 5:00AM	6	0	8	0	14		0 0	0	0	0	0	1	5	0	6	8	38	0	0	46	66
5:15AM	2	0	7	0	9		0	0	0	0	0	2	6	0	8	17	61	0	0	78	95
5:30AM	3	0	7	0	10		0 0	0	0	0	0	0	6	0	6	17	87	0	0	104	120
5:45AM	5	0	4	0	9		0	0	0	0	0	0	0	0	0	11	65	0	0	76	85
Hourly Total	16	0	26	0	42		0	0	0	0	0	3	17	0	20	53	251	0	0	304	366
6:00AM	3	0	1	0	4		0 0	0	0	0	0	2	3	0	5	9	96	0	0	105	114
6:15AM	7	0	5	0	12		0 0	0	0	0	0	0	3	0	3	6	104	0	0	110	125
6:30AM	10	0	2	0	12		0	0	0	0	0	1	1	0	2	3	95	0	0	98	112
6:45AM	16	0	7	0	23		0	0	0	0	0	11	1	0	12	2	97	0	0	99	134
Hourly Total	36	0	15	0	51		0	0	0	0	0	14	8	0	22	20	392	0	0	412	485
7:00AM	19	0	1	0	20		0	0	0	0	0	7	2	0	9	3	117	0	0	120	149
7:15AM	36	0	5	0	41		0 0	0	0	0	0	3	1	0	4	5	138	0	0	143	188
7:30AM	28	0	4	0	32		0	0	0	0	0	4	2	0	6	7	94	0	0	101	139
7:45AM	23	0	3	0	26		0	0	0	0	0	3	0	0	3	3	86	0	0	89	118
Hourly Total	106	0	13	0	119		0	0	0	0	0	17	5	0	22	18	435	0	0	453	594
8:00AM	17	0	2	0	19		0	0	0	0	0	3	2	0	5	1	77	0	0	78	102
8:15AM	35	0	3	0	38		0	0	0	0	0	3	0	0	3	1	67	0	0	68	109
8:30AM	16	0	3	0	19		0 0	0	0		0	8	0	0	8	2	68	0	0	70	97
8:45AM	29	0	2	0	31		0	0	0		0	4	0	0	4	3	67	0	0	70	105
Hourly Total	97	0	10	0	107		0	0	0		0	18	2	0	20	7	279	0	0	286	413
3:00PM	90	0	13	0	103		0	0	0	0	0	14	3	0	17	3	49	0	0	52	172
3:15PM	79	0	10	0	89		0	0	0	0	0	18	2	0	20	1	44	0	0	45	154
3:30PM	67	0	10	0	77		0	0	0	0	0	10	3	0	13	3	49	0	0	52	142
3:45PM	97	0	13	0	110		0 0	0	0		0	15	10	0	25	2	63	0	0	65	200
Hourly Total	333	0	46	0	379		0	0	0		0	57	18	0	75	9	205	0	0	214	668
4:00PM	70	0	12	0	82		0 0	0	0	0	0	13	2	0	15	5	54	0	0	59	156
4:15PM	106	0	8	0	114		0 0	0	0	0	0	16	7	0	23	2	53	0	0	55	192
4:30PM	106	1	15	0	122		0	0	0	0	0	21	4	0	25	5	57	0	0	62	209
4:45PM	107	0	16	0	123		0 0	0	0	0	0	17	3	0	20	3	61	0	0	64	207
Hourly Total	389	1	51	0	441		0	0	0	0	0	67	16	0	83	15	225	0	0	240	764
5:00PM	94	0	12	0	106		0	0	0		0	13	5	0	18	3	48	0	0	51	175
5:15PM	100	0	9	0	109		$0 \quad 0$	0	0	0	0	13	4	0	17	3	48	0	0	51	177
5:30PM	102	0	13	0	115		0 0	0	0	0	0	27	1	0	28	4	35	0	0	39	182
5:45PM	105	0	5	0	110		0 0	0	0	0	0	31	7	0	38	2	43	0	0	45	193
Hourly Total	401	0	39	0	440		0 0	0	0	0	0	84	17	0	101	12	174	0	0	186	727
6:00PM	64	0	12	0	76		0 0	0	0	0	0	14	3	0	17	1	34	0	0	35	128
6:15PM	69	0	8	0	77		0 0	0	0		0	9	4	0	13	3	35	0	0	38	128
6:30PM	66	0	8	0	74		0 0	0	0	0	0	7	2	0	9	3	31	0	0	34	117
6:45PM	65	1	7	0	73		0 0	0	0	0	0	10	7	0	17	0	28	0	0	28	118
Hourly Total	264	1	35	0	300		$0 \quad 0$	0	0	0	0	40	16	0	56	7	128	0	0	135	491
Total	1642	2	235	0	1879		$0 \quad 0$	0	0	0	0	300	99		399	141	2089	0		2230	4508
\% Approach	87.4\%	0.1\%	12.5\%	0\%			\% 0\%	0\%			0\%	75.2\%	24.8\%			6.3\%	93.7\%				
\% Total	36.4\%	0\%	5.2\%	0\%	41.7\%		\% 0\%	0\%	0\%		0\%	6.7\%	2.2\%	0\%	8.9\%	3.1\%	46.3\%	0\% 0	0\%	49.5\%	
Lights	1615	2	227	0	1844		$0 \quad 0$	0	0	0	0	292	97	0	389	140	2051	0	0	2191	4424
\% Lights	98.4\%	100\%	96.6\%	0\%	98.1\%		\% 0\%	0\%	0\%		0\%	97.3\%	98.0\%	0\%	97.5\%	99.3\%	98.2\%	0\% 0\%		98.3\%	98.1\%
Articulated Trucks	1	0	4	0			$0 \quad 0$	0	0	0	0	0	1	0	1	0	2	0		2	8
\% Articulated Trucks	0.1\%	0\%	1.7\%		0.3\%		\% 0\%	0\%	0\%		0\%	0\%	1.0\%		0.3\%	0\%		0\% 0		0.1\%	0.2\%
Buses and Single-Unit Trucks	26	0			30		$0 \quad 0$	0	0		0				9	1		0		37	76
\% Buses and Single-Unit Trucks	1.6\%	0\%	1.7\%	0\%	1.6\%		\% 0\%	0\%			0\%	2.7\%	1.0\%	0\%	2.3\%	0.7\%	1.7\%	0\% 0		1.7\%	1.7\%

[^6]Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913838, Location: 39.668263, -119.995779
[N] 395 NB On ramp
Total: 242
In: $0 \quad$ Out: 242

AM Peak (6:45 AM - 7:45 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913838, Location: 39.668263, -119.995779

Leg Direction	395 NB Off ramp Northbound				395 NB On ramp Southbound					Village Pkwy Eastbound					Village Pkwy Westbound					
Time	R T	L	U	App			T	L U	App	R	T	L	U	App	R	T	L	U	App	Int
2022-01-06 6:45AM	160	7	0	23		0	0	00	0	0	11	1	0	12	2	97	0	0	99	134
7:00AM	190	1	0	20		0	0	0	0	0	7	2	0	9	3	117	0	0	120	149
7:15AM	360	5	0	41		0	0	0	0	0	3	1	0	4	5	138	0	0	143	188
7:30AM	280	4	0	32		0	0	0	0	0	4	2	0	6	7	94	0	0	101	139
Total	990	17	0	116		0	0	0	0	0	25	6	0	31	17	446	0	0	463	610
\% Approach	85.3\% 0\%	14.7\% 0	0\%	-		\% 0	0\% 0	0\% 0\%	-	0\%	80.6\%	19.4\%	0\%	-	3.7\%	96.3\%	0\%	0\%	-	-
\% Total	16.2\% 0\%	2.8\% 0\%	0\%	19.0\%		\%	0\% 0	0\% 0\%	0\%	0\%	4.1\%	1.0\%	0\%	5.1\%	2.8\%	73.1\%	0\%	0\%	75.9\%	
PHF	0.688	0.607	-	0.707		-	-	- -	-	-	0.568	0.750	-	0.646	0.607	0.808	-	-	0.809	0.811
Lights	950	16	0	111		0	0	0	0	0	21	6	0	27	17	436	0	0	453	591
\% Lights	96.0\% 0\%	94.1\% 0	0\%	95.7\%	0\%	\% 0	0\% 0	0\% 0\%	-	0\%	84.0\%	100\%	0\%	87.1\%	100\%	97.8\%	0\%	0\%	97.8\%	96.9\%
Articulated Trucks	10	1	0	2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
\% Articulated Trucks	1.0\% 0\%	5.9\% 0	0\%	1.7\%	0\%	\% 0	0\% 0	0\% 0\%	-	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%	0\%	0.3\%
Buses and Single-Unit Trucks	30	0	0	3	0	0	0	$0 \quad 0$	0	0	4	0	0	4	0	10	0	0	10	17
\% Buses and Single-Unit Trucks	3.0\% 0\%	0\% 0	0\%	2.6\%		\%	0\% 0	0\% 0\%	-	0\%	16.0\%	0\%	0\%	12.9\%	0\%	2.2\%	0\%	0\%	2.2\%	2.8\%

${ }^{*}$ L: Left, R: Right, T: Thru, U: U-Turn

AM Peak (6:45 AM - 7:45 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913838, Location: 39.668263, -119.995779
[N] 395 NB On ramp
Total: 23
In: $0 \quad$ Out: 23

Out: $0 \quad$ In: 116
Total: 116
[S] 395 NB Off ramp

PM Peak (4:15 PM - 5:15 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913838, Location: 39.668263, -119.995779

Leg Direction	395 NB Off ramp Northbound					395 NB On ramp Southbound					Village Pkwy Eastbound					Village Pkwy Westbound					
Time	R	T	L	U	App	R	T	L	U	App	R	T	L	U	App	R	T	L	U	App	Int
2022-01-06 4:15PM	106	0	8	0	114	0	0	0	0	0	0	16	7	0	23	2	53	0	0	55	192
4:30PM	106	1	15	0	122	0	0	0	0	0	0	21	4	0	25	5	57	0	0	62	209
4:45PM	107	0	16	0	123	0	0	0	0	0	0	17	3	0	20	3	61	0	0	64	207
5:00PM	94	0	12	0	106	0	0	0	0	0	0	13	5	0	18	3	48	0	0	51	175
Total	413	1	51	0	465	0	0	0	0	0	0	67	19	0	86	13	219	0	0	232	783
\% Approach	88.8\%	0.2\%	11.0\%	0\%	-	0\%	0\%	0\%	0\%	-	0\%	77.9\%	22.1\%	0\%	-	5.6\%	94.4\%	0\%	0\%	-	-
\% Total	52.7\%	0.1\%	6.5\%	0\%	59.4\%	0\%	0\%	0\%	0\%	0\%	0\%	8.6\%	2.4\%	0\%	11.0\%	1.7\%	28.0\%	0\%	0\%	29.6\%	-
PHF	0.965	0.250	0.797	-	0.945	-	-	-	-	-	-	0.798	0.679	-	0.860	0.650	0.898	-	-	0.906	0.937
Lights	407	1	51	0	459	0	0	0	0	0	0	67	19	0	86	13	214	0	0	227	772
\% Lights	98.5\%	100\%	100\%	0\%	98.7\%	0\%	0\%	0\%	0\%	-	0\%	100\%	100\%	0\%	100\%	100\%	97.7\%	0\%	0\%	97.8\%	98.6\%
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Articulated Trucks	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	-	0\%	0\%		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Buses and Single-Unit Trucks	6	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	5	0	0	5	11
\% Buses and Single-Unit Trucks	1.5\%	0\%	0\%	0\%	1.3\%	0\%	0\%	0\%	0\%	-	0\%	0\%			0\%	0\%	2.3\%	0\%	0\%	2.2\%	1.4\%

* L: Left, R: Right, T: Thru, U: U-Turn

PM Peak (4:15 PM - 5:15 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913838, Location: 39.668263, -119.995779
[N] 395 NB On ramp
Total: 33
In: $0 \quad$ Out: 33

Out: 0
In: 465
Total: 465
[S] 395 NB Off ramp

N Virginia St and White Lake Pkwy - TMC
Thu Jan 6, 2022
Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913839, Location: 39.666439, -119.996597

* L: Left, R: Right, T: Thru, U: U-Turn

Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913839, Location: 39.666439, -119.996597

[N] N Virginia St

Total: 252
In: $116 \quad$ Out: 136

Out: 53 In: 63
Total: 116
[S] N Virginia St

Provided by: Kimley-Horn and Associates, Inc. 767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US

Thu Jan 6, 2022
AM Peak (6:30 AM - 7:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913839, Location: 39.666439, -119.996597

Leg Direction		N Virginia St Northbound				N Virginia St Southbound				White Lake Pkwy Eastbound				
Time		T	L	U	App	R	T	U	App	R	L	U	App	Int
	2022-01-06 6:30AM	2	0	0	2	6	1	0	7	0	2	0	2	11
	6:45AM	3	0	0	3	7	0	0	7	0	3	0	3	13
	7:00AM	3	0	0	3	0	0	0	0	0	3	0	3	6
	7:15AM	2	0	0	2	2	1	0	3	0	5	0	5	10
	Total	10	0	0	10	15	2	0	17	0	13	0	13	40
	\% Approach	100\%	0\%	0\%	-	88.2\%	11.8\%	0\%	-	0\%	100\%	0\%	-	-
	\% Total	25.0\%	0\%	0\%	25.0\%	37.5\%	5.0\%	0\%	42.5\%	0\%	32.5\%	0\%	32.5\%	-
	PHF	0.833	-	-	0.833	0.536	0.500	-	0.607	-	0.650	-	0.650	0.769
	Lights	8	0	0	8	14	2	0	16	0	11	0	11	35
	\% Lights	80.0\%	0\%	0\%	80.0\%	93.3\%	100\%	0\%	94.1\%	0\%	84.6\%	0\%	84.6\%	87.5\%
	Articulated Trucks	0	0	0	0	0	0	0	0	0	1	0	1	1
	\% Articulated Trucks	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	7.7\%	0\%	7.7\%	2.5\%
	Buses and Single-Unit Trucks	2	0	0	2	1	0	0	1	0	1	0	1	4
	\% Buses and Single-Unit Trucks	20.0\%	0\%	0\%	20.0\%	6.7\%	0\%	0\%	5.9\%	0\%	7.7\%	0\%	7.7\%	10.0\%

[^7]AM Peak (6:30 AM - 7:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913839, Location: 39.666439, -119.996597
[N] N Virginia St
Total: 40
In: $17 \quad$ Out: 23

Out: 2 In: 10
Total: 12
[S] N Virginia St

N Virginia St and White Lake Pkwy - TMC
Provided by: Kimley-Horn and Associates, Inc.
Thu Jan 6, 2022
767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US
PM Peak (3:15 PM - 4:15 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913839, Location: 39.666439, -119.996597

Leg Direction	N Virginia St Northbound				N Virginia St Southbound				White Lake Pkwy Eastbound				
Time	T	L	U	App	R	T	U	App	R	L	U	App	Int
2022-01-06 3:15PM	2	0	0	2	4	4	0	8	0	14	0	14	24
3:30PM	1	0	0	1	1	4	1	6	0	5	0	5	12
3:45PM	1	0	0	1	4	1	0	5	0	3	0	3	9
4:00PM	2	2	0	4	1	2	0	3	1	3	0	4	11
Total	6	2	0	8	10	11	1	22	1	25	0	26	56
\% Approach	75.0\%	25.0\%	0\%	-	45.5\%	50.0\%	4.5\%	-	3.8\%	96.2\%	0\%	-	-
\% Total	10.7\%	3.6\%	0\%	14.3\%	17.9\%	19.6\%	1.8\%	39.3\%	1.8\%	44.6\%	0\%	46.4\%	-
PHF	0.750	0.250	-	0.500	0.625	0.688	0.250	0.688	0.250	0.446	-	0.464	0.583
Lights	6	1	0	7	10	9	0	19	1	23	0	24	50
\% Lights	100\%	50.0\%	0\%	87.5\%	100\%	81.8\%	0\%	86.4\%	100\%	92.0\%	0\%	92.3\%	89.3\%
Articulated Trucks	0	0	0	0	0	0	0	0	0	1	0	1	1
\% Articulated Trucks	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	4.0\%	0\%	3.8\%	1.8\%
Buses and Single-Unit Trucks	0	1	0	1	0	2	1	3	0	1	0	1	5
\% Buses and Single-Unit Trucks	0\%	50.0\%	0\%	12.5\%	0\%	18.2\%	100\%	13.6\%	0\%	4.0\%	0\%	3.8\%	8.9\%

[^8]PM Peak (3:15 PM - 4:15 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913839, Location: 39.666439, -119.996597
[N] N Virginia St
Total: 54
In: 22 Out: 32

Out: $12 \quad \operatorname{In}: 8$
Total: 20
[S] N Virginia St

White Lakes Rd and S Reno Park Blvd - TMC
Thu Jan 6, 2022
Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913840, Location: 39.659631, -119.997312

* L: Left, R: Right, T: Thru, U: U-Turn

Full Length (5 AM-9 AM, 3 PM-7 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913840, Location: 39.659631, -119.997312
[N] White Lake Blvd
Total: 127
In: $59 \quad$ Out: 68
$\stackrel{\circ}{\mathrm{N}} \quad \stackrel{-}{m} \sim$

Provided by: Kimley-Horn and Associates, Inc. 767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US

AM Peak (6:30 AM - 7:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913840, Location: 39.659631, -119.997312

Leg Direction		White Lake Blvd Southbound				S Reno Blvd Eastbound				S Reno Blvd Westbound					
Time		R	L	U	App	T	L	U	App	R	T	U	App	In	
	2022-01-06 6:30AM	5	1	0	6	0	0	0	0	2	0	0	2		8
	6:45AM	6	0	0	6	0	1	0	1	0	0	0	0		7
	7:00AM	0	0	0	0	0	0	0	0	2	0	0	2		2
	7:15AM	1	1	0	2	0	1	0	1	4	0	0	4		7
	Total	12	2	0	14	0	2	0	2	8	0	0	8		24
	\% Approach	85.7\%	14.3\%	0\%	-	0\%	100\%	0\%	-	100\%	0\%	0\%	-		-
	\% Total	50.0\%	8.3\%	0\%	58.3\%	0\%	8.3\%	0\%	8.3\%	33.3\%	0\%	0\%	33.3\%		-
	PHF	0.500	0.500	-	0.583	-	0.500	-	0.500	0.500	-	-	0.500		0.750
	Lights	12	1	0	13	0	1	0	1	8	0	0	8		22
	\% Lights	100\%	50.0\%	0\%	92.9\%	0\%	50.0\%	0\%	50.0\%	100\%	0\%	0\%	100\%		91.7\%
	Articulated Trucks	0	0	0	0	0	1	0	1	0	0	0	0		1
	\% Articulated Trucks	0\%	0\%	0\%	0\%	0\%	50.0\%	0\%	50.0\%	0\%	0\%	0\%	0\%		4.2\%
	Buses and Single-Unit Trucks	0	1	0	1	0	0	0	0	0	0	0	0		1
	\% Buses and Single-Unit Trucks	0\%	50.0\%	0\%	7.1\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%		4.2\%

[^9]AM Peak (6:30 AM - 7:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913840, Location: 39.659631, -119.997312
[N] White Lake Blvd
Total: 24
In: 14 Out: 10

Out: $2 \quad$ In: 8
Total: 10
[E] S Reno Blvd

White Lakes Rd and S Reno Park Blvd - TMC
Provided by: Kimley-Horn and Associates, Inc.
Thu Jan 6, 2022
767 Eustis Street, Suite 100, Saint Paul, MN, 55114, US
PM Peak (3:15 PM - 4:15 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913840, Location: 39.659631, -119.997312

Leg Direction		White Lake Blvd Southbound				S Reno Blvd Eastbound				S Reno Blvd Westbound				
Time		R	L	U	App	T	L	U	App	R	T	U	App	Int
	2022-01-06 3:15PM	0	2	0	2	1	10	0	11	3	0	0	3	16
	3:30PM	0	1	1	2	0	5	0	5	1	0	0	1	8
	3:45PM	0	3	0	3	0	1	0	1	1	0	0	1	5
	4:00PM	1	1	0	2	0	1	0	1	3	0	0	3	6
	Total	1	7	1	9	1	17	0	18	8	0	0	8	35
	\% Approach	11.1\%	77.8\%	11.1\%	-	5.6\%	94.4\%	0\%	-	100\%	0\%	0\%	-	-
	\% Total	2.9\%	20.0\%	2.9\%	25.7\%	2.9\%	48.6\%	0\%	51.4\%	22.9\%	0\%	0\%	22.9\%	-
	PHF	0.250	0.583	0.250	0.750	0.250	0.425	-	0.409	0.667	-	-	0.667	0.547
	Lights	0	7	0	7	1	16	0	17	8	0	0	8	32
	\% Lights	0\%	100\%	0\%	77.8\%	100\%	94.1\%	0\%	94.4\%	100\%	0\%	0\%	100\%	91.4\%
	Articulated Trucks	0	0	0	0	0	1	0	1	0	0	0	0	1
	\% Articulated Trucks	0\%	0\%	0\%	0\%	0\%	5.9\%	0\%	5.6\%	0\%	0\%	0\%	0\%	2.9\%
	Buses and Single-Unit Trucks	1	0	1	2	0	0	0	0	0	0	0	0	2
	\% Buses and Single-Unit Trucks	100\%	0\%	100\%	22.2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	5.7\%

[^10]PM Peak (3:15 PM - 4:15 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 913840, Location: 39.659631, -119.997312
[N] White Lake Blvd
Total: 35
In: $9 \quad$ Out: 26

8

Kimley»Horn

APPENDIX C
 Trip Generation Calculations

Project \qquad Project Max
Trip generation for Manufacturing
Designed by EKR

Checked by \qquad
Date \qquad

Job No \qquad

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation 11th Edition, Average Rate Equations

Land Use Code -	140
Independent Variable -	1,000 Sq Ft
Number of Units (X) -	416
$\mathrm{~T}=$ Trip Ends	

Peak Hour Adjacent Street Traffic One Hour Between 7 and 9 AM

AM Peak
Directional Distribution:
$\mathrm{T}=(\mathrm{X})$ * $0.68 \quad$ Trip Ends Per 1,000 Sq Ft
$\mathrm{T}=283$ Trip Ends

76%	Entering
215 Entering	68 Exiting

Peak Hour Adjacent Street Traffic One Hour Between 4 and 6 PM

PM Peak
$T=(X)$ * $0.74 \quad$ Trip Ends Per 1,000 Sq Ft
$T=308 \quad$ Trip Ends

Weekday
Daily Weekday
$\mathrm{T}=(\mathrm{X})^{*} \quad 4.75 \quad$ Trip Ends Per 1,000 Sq Ft
$T=1976$
Trip Ends

Non-Pass-By Trip Percentage
AM 100\%
PM 100\%

Non-Pass-By Trip Volumes

AM Peak
PM Peak

Directional Distribution:
31\% Entering 69\% Exiting
95 Entering 213 Exiting

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation 11th Edition, Average Rate Equations

Land Use Code -	$150 \quad$ Warehousing
Independent Variable -	$1,000 \mathrm{Sq} \mathrm{Ft}$
Number of Units (X) -	1248
$\mathrm{~T}=$ Trip Ends	

Peak Hour Adjacent Street Traffic One Hour Between 7 and 9 AM

AM Peak			Directional Distribution:	
$\mathrm{T}=$	$(\mathrm{X})^{*}$	0.17	Trip Ends Per 1,000 Sq Ft	77% Entering

Peak Hour Adjacent Street Traffic One Hour Between 4 and 6 PM
PM Peak
Directional Distribution:
$T=(X)$ * $0.18 \quad$ Trip Ends Per 1,000 Sq Ft
$T=225 \quad$ Trip Ends

28%	Entering
63 Entering	72% Exiting
	162 Exiting

Weekday
Daily Weekday
$\mathrm{T}=(\mathrm{X})^{*} \quad 1.71 \quad$ Trip Ends Per 1,000 Sq Ft
$T=2136$
Trip Ends
Directional Distribution:
50\% Entering 50\% Exiting 1068 Entering 1068 Exiting

Non-Pass-By Trip Percentage

AM 100\%
PM 100\%

Non-Pass-By Trip Volumes

AM Peak	163 Entering	49 Exiting
PM Peak	63 Entering	162 Exiting

63 Entering
162 Exiting

Note: Rounding may occur in calculations

Kimley»"Horn

APPENDIX D

Key Intersection Peak Hour loS Calculations

Intersection						
Int Delay, s/veh	6.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	18	20	1	21	37	1
Future Vol, veh/h	18	20	1	21	37	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	86	86	92	92	63	63
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	21	23	1	23	59	2

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	133	13	0	0	24	0
Stage 1	13	-	-	-	-	-
Stage 2	120	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	861	1067	-	-	1591	-
Stage 1	1010		-	-	-	-
Stage 2	905	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	829	1067	-	-	1591	-
Mov Cap-2 Maneuver	829	-	-	-	-	-
Stage 1	1010	-	-	-	-	-
Stage 2	872	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		7.2	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	
Capacity (veh/h)		-	-	939	1591	-
HCM Lane V/C Ratio		-	-	0.047	0.037	-
HCM Control Delay (s)		-	-	9	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0.1	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 14.7 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\&				
Traffic Vol, veh/h	6	25	0	0	446	17	17	0	99	0	0	0
Future Vol, veh/h	6	25	0	0	446	17	17	0	99	0	0	0
Peak Hour Factor	0.65	0.65	0.65	0.81	0.81	0.81	0.71	0.71	0.71	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	38	0	0	551	21	24	0	139	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	8.4				16.8		9.3					
HCM LOS	A				C		A					

Lane	NBLn1	EBLn1	WBLn1
Vol Left, \%	15%	19%	0%
Vol Thru, \%	0%	81%	96%
Vol Right, \%	85%	0%	4%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	116	31	463
LT Vol	17	6	0
Through Vol	0	25	446
RT Vol	99	0	17
Lane Flow Rate	163	48	572
Geometry Grp	1	1	1
Degree of Util (X)	0.22	0.066	0.694
Departure Headway (Hd)	4.853	4.997	4.373
Convergence, Y/N	Yes	Yes	Yes
Cap	737	713	823
Service Time	2.899	3.05	2.407
HCM Lane V/C Ratio	0.221	0.067	0.695
HCM Control Delay	9.3	8.4	16.8
HCM Lane LOS	A	A	C
HCM 95th-tile Q	0.8	0.2	5.7

Intersection						
Int Delay, s/veh	2.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	F	
Traffic Vol, veh/h	13	0	0	10	2	15
Future Vol, veh/h	13	0	0	10	2	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	65	65	83	83	61	61
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	20	0	0	12	3	25

HCM LOS

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1595	-	-	-	-	-	-

Intersection						
Int Delay, s/veh	7.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			-1
Traffic Vol, veh/h	15	73	5	15	89	5
Future Vol, veh/h	15	73	5	15	89	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	83	83	84	84
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	16	79	6	18	106	6

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	233	15	0	0	24	0
Stage 1	15	-	-	-	-	-
Stage 2	218	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	755	1065	-	-	1591	-
Stage 1	1008	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	704	1065	-	-	1591	-
Mov Cap-2 Maneuver	704	-	-	-	-	-
Stage 1	1008	-	-	-	-	-
Stage 2	763	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		7	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	
Capacity (veh/h)		-	-	979	1591	-
HCM Lane V/C Ratio		-	-	0.098	0.067	-
HCM Control Delay (s)		-	-	9.1	7.4	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-		0.3	0.2	-

Intersection												
Int Delay, s/veh 5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow						\$	
Traffic Vol, veh/h	0	64	40	195	80	0	0	0	0	24	3	8
Future Vol, veh/h	0	64	40	195	80	0	0	0	0	24	3	8
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Stop	Stop	Stop								
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	92	92	92	92	92	92	73	73	73
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	74	46	212	87	0	0	0	0	33	4	11

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 12.3 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\$				
Traffic Vol, veh/h	19	67	0	0	219	13	51	1	413	0	0	0
Future Vol, veh/h	19	67	0	0	219	13	51	1	413	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.91	0.91	0.91	0.95	0.95	0.95	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	22	78	0	0	241	14	54	1	435	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	9.5				11.2		13.5					
HCM LOS	A				B		B					

Lane	NBLn1	EBLn1	WBLn1
Vol Left, \%	11%	22%	0%
Vol Thru, \%	0%	78%	94%
Vol Right, \%	89%	0%	6%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	465	86	232
LT Vol	51	19	0
Through Vol	1	67	219
RT Vol	413	0	13
Lane Flow Rate	489	100	255
Geometry Grp	1	1	1
Degree of Util (X)	0.589	0.154	0.363
Departure Headway (Hd)	4.332	5.535	5.13
Convergence, Y/N	Yes	Yes	Yes
Cap	827	652	693
Service Time	2.391	3.535	3.229
HCM Lane V/C Ratio	0.591	0.153	0.368
HCM Control Delay	13.5	9.5	11.2
HCM Lane LOS	B	A	B
HCM 95th-tile Q	3.9	0.5	1.7

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	F	
Traffic Vol, veh/h	25	1	2	6	11	10
Future Vol, veh/h	25	1	2	6	11	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	46	46	50	50	69	69
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	54	2	4	12	16	14

Intersection													
Int Delay, s/veh	0												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\uparrow			¢			¢		
Traffic Vol, veh/h	17	1	0	0	0	8	0	0	0	8	0	1	
Future Vol, veh/h	17	1	0	0	0	8	0	0	0	8	0	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-		None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	41	41	92	92	67	67	92	92	92	75	92	75	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	41	2	0	0	0	12	0	0	0	11	0	1	

HCM LOS

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1622	-	-	-	-	-	-

Intersection						
Int Delay, s/veh	10.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	396	20	1	138	37	1
Future Vol, veh/h	396	20	1	138	37	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	83	83	84	84
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	430	22	1	166	44	1

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	173	84	0	0	167	0
Stage 1	84	-	-	-	-	-
Stage 2	89	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	817	975	-	-	1411	-
Stage 1	939	-	-	-	-	-
Stage 2	934	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	792	975	-	-	1411	-
Mov Cap-2 Maneuver	792	-	-	-	-	-
Stage 1	939	-	-	-	-	-
Stage 2	905	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.2		0		7.4	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	799	1411	-
HCM Lane V/C Ratio		-	-	0.566	0.031	-
HCM Control Delay (s)		-	-	15.2	7.6	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-		3.6	0.1	-

Intersection												
Int Delay, s/veh	4.6											
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow						\ddagger	
Traffic Vol, veh/h	0	41	139	429	394	0	0	0	0	7	2	24
Future Vol, veh/h	0	41	139	429	394	0	0	0	0	7	2	24
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Stop	Stop	Stop								
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	92	92	92	92	92	92	73	73	73
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	47	160	466	428	0	0	0	0	10	3	33

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 25.2 |
| Intersection LOS | D |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\$				
Traffic Vol, veh/h	12	37	0	0	484	17	339	0	99	0	0	0
Future Vol, veh/h	12	37	0	0	484	17	339	0	99	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.91	0.91	0.91	0.95	0.95	0.95	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	14	43	0	0	532	19	357	0	104	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	10.1				29.2		22.3					
HCM LOS	B				D		C					

Lane	NBLn1	EBLn1	WBLn1
Vol Left, \%	77%	24%	0%
Vol Thru, \%	0%	76%	97%
Vol Right, \%	23%	0%	3%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	438	49	501
LT Vol	339	12	0
Through Vol	0	37	484
RT Vol	99	0	17
Lane Flow Rate	461	57	551
Geometry Grp	1	1	1
Degree of Util (X)	0.725	0.1	0.828
Departure Headway (Hd)	5.661	6.288	5.413
Convergence, Y/N	Yes	Yes	Yes
Cap	636	567	666
Service Time	3.71	4.36	3.458
HCM Lane V/C Ratio	0.725	0.101	0.827
HCM Control Delay	22.3	10.1	29.2
HCM Lane LOS	C	B	D
HCM 95th-tile Q	6.2	0.3	8.9

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			\&			4	
Traffic Vol, veh/h	49	0	0	0	0	8	0	71	0	2	227	164
Future Vol, veh/h	49	0	0	0	0	8	0	71	0	2	227	164
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	41	41	92	92	67	67	92	92	92	75	92	75
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	120	0	0	0	0	12	0	77	0	3	247	219

Intersection						
Int Delay, s/veh	6.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			-
Traffic Vol, veh/h	173	73	5	390	89	5
Future Vol, veh/h	173	73	5	390	89	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	83	83	84	84
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	188	79	6	470	106	6

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	459	241	0	0	476	0
Stage 1	241	-	-	-	-	-
Stage 2	218	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	560	798	-	-	1086	-
Stage 1	799	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	505	798	-	-	1086	-
Mov Cap-2 Maneuver	505	-	-	-	-	-
Stage 1	799	-	-	-	-	-
Stage 2	738	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16.9		0		8.2	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	567	1086	-
HCM Lane V/C Ratio		-	-	0.472	0.098	-
HCM Control Delay (s)		-	-	16.9	8.7	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-		2.5	0.3	-

Intersection												
Int Delay, s/veh 3												
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个			\uparrow						\$	
Traffic Vol, veh/h	0	121	359	195	231	0	0	0	0	24	3	16
Future Vol, veh/h	0	121	359	195	231	0	0	0	0	24	3	16
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Stop	Stop	Stop								
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	92	92	92	92	92	92	73	73	73
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	139	413	212	251	0	0	0	0	33	4	22

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			F			\$				
Traffic Vol, veh/h	38	105	0	0	235	13	186	1	413	0	0	0
Future Vol, veh/h	38	105	0	0	235	13	186	1	413	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.91	0.91	0.91	0.95	0.95	0.95	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	44	122	0	0	258	14	196	1	435	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	11.7				13.6		29.7					
HCM LOS	B				B		D					

Lane	NBLn1	EBLn1	WBLn1
Vol Left, \%	31%	27%	0%
Vol Thru, \%	0%	73%	95%
Vol Right, \%	69%	0%	5%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	600	143	248
LT Vol	186	38	0
Through Vol	1	105	235
RT Vol	413	0	13
Lane Flow Rate	632	166	273
Geometry Grp	1	1	1
Degree of Util (X)	0.855	0.284	0.445
Departure Headway (Hd)	4.874	6.147	5.875
Convergence, Y/N	Yes	Yes	Yes
Cap	739	582	610
Service Time	2.917	4.208	3.929
HCM Lane V/C Ratio	0.855	0.285	0.448
HCM Control Delay	29.7	11.7	13.6
HCM Lane LOS	D	B	B
HCM 95th-tile Q	10.1	1.2	2.3

Intersection						
Int Delay, s/veh	50.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	F			\uparrow	\uparrow	
Traffic Vol, veh/h	400	1	2	6	11	168
Future Vol, veh/h	400	1	2	6	11	168
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	46	46	50	50	69	69
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	870	2	4	12	16	243

Intersection													
Int Delay, s/veh	14.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow			\uparrow			${ }_{\text {¢ }}$			\uparrow		
Traffic Vol, veh/h	167	1	0	0	0	8	0	225	0	8	95	65	
Future Vol, veh/h	167	1	0	0	0	8	0	225	0	8	95	65	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-		-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	41	41	92	92	67	67	92	92	92	75	92	75	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	407	2	0	0	0	12	0	245	0	11	103	87	

Kimley»Horn

APPENDIX E Site Plan

RE: Geotechnical Summary Report
Project Max - North Reno Parcels
Washoe County, Nevada

Dear Mr. Owens:

Corestone Engineering, Inc. (CEI) is pleased to present this geotechnical summary report for the proposed industrial/commercial project with multiple warehouse-type buildings within an approximately 130 acres of undeveloped land south of South Reno Park Boulevard in Cold Springs community area of Washoe County, Nevada. Currently, CEI is performing geotechnical investigation for the project to develop complete preliminary geotechnical recommendations for the planning and preliminary design of the project, and we recently competed geotechnical test pit exploration and fault trenching activities within the site. The advancement of geotechnical borings is scheduled to occur in the next 2 weeks timeframe. A geotechnical investigation report will be issued in the next few weeks to summarize findings from recently completed exploration and soon to be completed boring exploration, subsequent laboratory testing, geotechnical analyses, and detailed geotechnical recommendations for the project.

This geotechnical summary letter is being issued as an interim document for tentative map submittal to Washoe County and provides summary of our preliminary findings from the completed research/review and filed tasks to date focusing on geological hazards, geologic and general soil conditions associated with the site and limited preliminary geotechnical recommendations for the proposed project.

Project Description

The proposed project will include design and construction of multiple industrial buildings within the vacant land south of South Reno Park Boulevard in Cold Springs community area of Washoe County, Nevada. The project site includes 7 parcels, Accessor's Parcel Numbers (APNs) 081-131-21, -32, -39, -43, -46, 50 , and -51 , of various sizes and incorporates approximately 130 acres of undeveloped land. The site span east and west of Union Pacific Railroad (UPRR) right-of-way and exhibits a hilly terrain. The project site is entirely contained in Sections 29 and 30, Township 21 North, Range 18 East, Mount Diablo Meridian and spans west up to the State of Nevada border with State of California. The project site is bordered to the north by South Reno Park Boulevard and existing commercial facilities, to the east by existing single-family residential parcels and to the south and west by undeveloped land. Access to the project site areas east and west of UPRR right-of-way is obtained from northside via the unpaved South Reno Park Boulevard. The site area east of UPRR track can also be accessed by a gravel-surfaced road that extends west/northwest from the termination of South Avenue.

Based on the preliminary site layout and grading plan for the project prepared by Robison Engineering Company, Inc. (Robison) of Reno, Nevada, a total of 5 buildings of various sizes up to about 764,500 -squre-foot (-sf) in size are expected on the project. The largest building A and 2 smaller buildings (Buildings B1 and B2 that are less than 100,0000-sf in size) will be located east of railroad and Buildings C and D will be located west of railroad. The buildings will be Portland cement concrete (PCC) tilt-up panel wall structures support by PCC shallow spread footings and will have PCC slab-on-grade floors. Buildings will include PCC truck loading docks and PCC truck aprons on one or two long sides.

The primary access to the buildings east of the railroad will be via a new private access drive that will extend from the northeast corner of the overall project site

Preliminary Project Layout and Grading Concept off Reno Park Boulevard. The western buildings will have the main access point extending from the current termination of Reno Park Boulevard. In addition, an emergency access road will be provided for the project from the southeast extending from the South Avenue. This access will connect the project east and west of the railroad via a new at-grade railroad crossing. The facility will include asphalt concrete drive paths between buildings as well as adjacent to buildings along with parking lots consisting of numerous passenger car vehicle and truck parking spaces for each building. We also anticipate the need for retention/detention basins as part of stormwater management for the project. A large detention/retention basin is expected in the northeastern portion of the project site. Natural drainage paths and ravines that exist within the site (mostly within the eastern portion of the site east of railroad) will also likely be routed surrounding the improvement areas and to drain ultimately to the east.

Due to moderate to steep site topography, the preliminary grading plan from Robinson shows deep cuts and fills to establish design grades for the project. Cuts and fills up to 40 feet are expected. Deepest cuts will occur within the southeastern limits of pad for Building C (southern building west of railroad) and deepest fills will occur within the northeastern limits of the project site to establish design grades for

Building A. Depending on the final grading plan and space constraints, site retaining walls may be necessary in some areas. Majority of the cuts and fills will be sloped at 3H:1V (horizontal to vertical) ratio. Some limited segments of the slopes on the project will be sloped at $2 \mathrm{H}: 1 \mathrm{~V}$ ratio and these slopes will be protected against erosion via providing rip-rap armor.

Site Conditions

The site is generally undeveloped with some minor infrastructures. As noted above, UPRR right-of-way runs in the middle of the project area and lies on grades established via cuts and fills. Unimproved roads (jeep trails) exist on both sides of the railroad and these roads follow the natural topography. A large, atgrade steel water storage tank exists just outside the southern limits of the project site (west of railroad) within an approximately 200-foot-square parcel, APN 081-121-31, owned by Great Basin Water Company (GBWC) and is not part of the project site. This parcel is located near the highest topographical areas of the overall project site. A mostly unimproved road extends from the current termination of Reno Park Boulevard to the water tank parcel and this access road includes recycled asphalt concrete base surfacing in the segment that climbs up near the tank. There are three additional GBWC's 50 -foot-square parcels west of the railroad and it is our understanding these parcels will be relocated as part of the project. Another GBWC's 50 -foot-square parcel also present east of railroad and this parcel will also be relocated. Overhead power lines exist along Reno Park Boulevard and extends south from the northern limits of the project site. A separate approximately 1.5 -acre parcel, APN 081-121-45, is located just east of the railroad and is surrounded by the project site. This parcel hosts a voluntary fire station facility and is accessed by a gravel-surfaced access road that extends from the current termination of South Avenue. Overhead power and communication lines exist along this access road.

The topography within the site is undulating and irregular with small ridge areas and ravines. In general, the site area west of the railroad slopes down moderately to the east and north from the high areas within the southern edge portion of the project site. The site area east of the railroad starts from a low elevation at the southern edge (near South Avenue) and

Site Conditions - Looking North from Edge of Southern Tank Parcel

Corestone Engineering, Inc.
10751 Grayslake Dr, Reno, Nevada 89521

Geotechnical Services \& Construction Materials Testing 775-636-5916 vimal@corestoneengineering.com
follows an undulating ground with ridges and narrow to broad ravines towards north. The highest elevation of about 5,300 feet above mean sea level (msl) within the site exists along the southcentral perimeter of the site (near tank parcel). The low points within the site exist at the southeastern, northeastern, and northwestern portions of the project site (about 5,140 feet above msl).

The site generally exhibits sparse to dense vegetation consisting of sage brush and some other desert plants that are generally up to about 4 feet tall. There are isolated desert plants that are as tall as 6 feet, mainly east of railroad. The site drainage is via surface runoff and sheet flow towards natural drainage paths.

Exploration and Laboratory Testing

The site was explored recently in the week of January $24^{\text {th }}$ of 2022 by advancing 22 geotechnical test pits. The test pits were located throughout the limits of the proposed improvements and were advanced using a Cat ${ }^{\oplus}$ track-mounted 336 excavator to maximum depth of about 18 feet below existing ground surface. The geotechnical exploration for the project will also include advancement of 8 geotechnical borings extending as deep as 80 feet depth below existing ground surface. In addition, the subsurface geologic investigation of the mapped faults within the site (discussed later under Geological Hazards section) included advancement of 7 fault trenches.

The results of the geotechnical exploration (logs of test pits, fault trenches, and borings) will be included in the complete geotechnical report. During the completed test pit and fault trenching, a geotechnical engineer examined and identified all soils in the field in accordance with the American Society for Testing Materials (ASTM) D 2488. The soils encountered in the proposed borings will also be examined and identified by a CEI geotechnical engineer. Laboratory testing will commence upon the completion of boring exploration and will include the analyzing of representative soil samples to determine the in-situ moisture content (ASTM D 2216), grain size distribution (ASTM D

Typical Soils Profile in a Fault Trench
422), and plasticity index (ASTM D 4318) as well as chemical testing to evaluate site soils' potential to corrode PCC and buried metal. The laboratory test results will be utilized to classify the soils in accordance with ASTM D 2487 and to verify field classification and to prepare final exploration logs that will be included in the geotechnical report. Laboratory test results will also be utilized in geotechnical analyses and the formulation of geotechnical recommendations for the project.

Geologic and Preliminary Soil Conditions

The Project Max site is mapped by the Nevada Bureau of Mines and Geology (NBMG) to lie in the Tertiary age Lacustrine and alluvial sediments (Soeller and Nielsen, 1980). The NBMG describes these sediments (Ts) as thick basin-fill deposits of grayish-orange to pale-brown, coarse to medium sand, granular sand, siltstone, silty to pebbly sandstone, and minor sandy pebble conglomerate, very thinbedded as and diatomite; sediments are generally unconsolidated and bedding is usually indistinct; In part includes younger alluvium near the surface (Soeller and Nielsen, 1980). The geological setting of the site consists of old basin-fill deposits that have been faulted and folded to result in the current undulating topography of the site with small ridges and ravines. The materials encountered in our test pit and fault trench exploration that have been completed to date through a maximum depth of 18 feet below existing ground surface correspond with NBMG mapping and mostly consists of granular clayey to silty sand deposits.

The following provides the preliminary description of subsurface soils conditions within the site based on our field classification of soils encountered in the test pits and fault trenches. Laboratory testing on representative soil samples collected from test pits/trenches will be performed upon the completion of geotechnical borings. The field classifications of soils will be updated once the laboratory testing is complete and final exploration logs will be presented in the complete geotechnical report for the project.

The site subsurface soils generally consist of a relatively thin (generally up to 2 feet in thickness) dark brown, medium dense clay-rich clayey sand to sandy lean clay soil layer underlain by mostly granular silty

Geologic Map
sand to clayey sand deposits. The deeper soils exhibit a variable slight to moderate cementation and are at dense to very dense consistency. These granular sand soils exhibit moderate percentage (generally up to about 40 percent) of low to medium plasticity fines. Minor layers of fine-grained silt and sandy lean clay exhibiting generally low plasticity fines were also encountered in some test pits within the deeper horizon. The upper clay-rich soils generally exhibit up to about 60 percent medium plasticity fines. Surficial clayey sand souls were common in the site area east of railroad track, The subsurface soils in some areas also exhibit a variable percentage of gravels that are generally up to 2 inches in diameter. Oversized particles were rare in the subsurface soils except some localized areas west of the railroad where cobbles up to 4 inches were encountered in the exploration.

Groundwater was not encountered during our test pit exploration that extended through a maximum of 18 feet below existing ground surface. Based on the review of well logs in the Nevada Division of Water Resources database, a well advanced about 0.5 miles northeast of the project site (near White Lake) encountered static groundwater table at about 34 feet below existing ground surface. The project site is located at significantly higher elevation than the well location. We anticipate the groundwater within the project site is at a depth that should not be a concern for design and construction of the project. It is noted that the geotechnical exploration for the project will include borings extending as deep as 80 feet below existing ground surface, mainly focusing deep cut areas. These deep borings will allow to provide additional discussion on the depth to groundwater table within the project site in the complete geotechnical report for the project.

Geologic Hazards

Seismicity

The Cold Springs area lies within an area with a high potential for moderate to strong earthquake shaking. It is generally accepted that a maximum credible earthquake in this area would be in the range of magnitude 7 to 7.5 along the frontal fault system of the eastern Sierra Nevada. The most active segment of this fault system in this region is located at the base of the mountains near Thomas Creek, Whites Creek, and M. Rose Highway, some 21 miles southeast of the project site.

Faults

The NBMG MyHazards web-mapping tool (NBMG, 2022) and the earthquake hazards map for the area (Szecsody, 1983) shows four undifferentiated Quaternary age fault splays associated with the Peavine Mountain Fault Zone within the limits of the project site. The earthquake hazards map states the faults are predominantly bedrock faults of probable pre-Pleistocene age and bedrock-alluvial faults of probable midto late Pleistocene age; However, recent fault movements are not precluded in this category.

The Nevada Earthquake Safety Council (NESC, 1998) has developed and adopted the criteria for evaluation of Quaternary age earthquake faults. Holocene Active Faults are defined as those with evidence of movement within the past 10,000 years (Holocene time). Those faults with evidence of
displacement during the last 130,000 years are termed Late Quaternary Active Faults. A Quaternary Active Fault is one that has moved within the last 1.6 million years. An Inactive Fault is a fault without recognized activity within Quaternary time (last 1.6 million years). Holocene Active Faults normally require that occupied structures be set back a minimum of 50 feet (100 -foot-wide zone) from the ground surface fault trace. An Occupied Structure is considered a building, as defined by the International Building Code (IBC), which is expected to have a human occupancy rate of more than 2,000 hours per year (International Code Council [ICC], 2018).

The setback from Quaternary Active Faults is left to the judgment of the geologist/engineer; however, no Critical Facility is permitted to be placed over the trace of a Late Quaternary Active Fault. A Critical Facility is defined as a building or structure that is considered critical to the function of the community or the project under consideration. Examples include, but are not limited to, hospitals, fire stations, emergency management operations centers and schools.

With the presence of mapped Quaternary age faults within the project site, CEI subcontracted an experienced and qualified geologist Mr. Thomas L. Sawyer with Piedmont Geoseismic Services (PGS) of Dyer, Nevada to perform a detailed fault hazard investigation for the project in accordance with NESC guidelines. To date, PGS has completed surficial geologic investigation tasks (research and aerial photo study) and field tasks (fault trenching) associated with the subsurface geologic investigation for the mapped faults within the project site. PGS is currently analyzing the fault trench photos and preparing a detailed fault hazard investigation report for the project. The findings from the fault hazard investigation will be incorporated as part of the complete geotechnical investigation for the project. The preliminary Quaternary age fault map prepared by PGS based on the research and aerial photo study is enclosed in Appendix A (Preliminary Quaternary Fault Map). The map also shows the locations of the fault trenches (FT1 through FT7) that were advanced as part of the subsurface geologic investigation of faults; the fault trenches were evaluated, mapped, and photographed in the field by PGS and PGS is currently completing additional analyses of the collected data from fault trenches

Based on the verbal findings from PGS, only the southwestern fault trenches (FT1 and FT2) advanced across the fault play mapped to extend within the extreme southwestern corner portion of the site revealed a young fault requiring fault hazard mitigation in the form of building set back. Depending on the final location of the southwestern fault splay, the proposed southwestern Building C may need some shifting/adjustment in the final project design to observe sufficient set back from a potentially active fault trace. Once the fault hazard investigation is complete, the fault location should be surveyed based on the stakes placed by PGS to incorporate the fault trace in the final project plans. No other buildings on the project will require fault mitigation.

Ground Motion and Liquefaction

The United States Geological Survey seismic design maps that have been incorporated with the American Society of Civil Engineers (ASCE) Online ASCE 7 Hazard Tool indicate that there is a 2 percent
probability that a bedrock ground acceleration of 0.64 g will be exceeded in any 50 -year interval (ASCE, 2022). Only localized amplification of ground motion would be expected during an earthquake.

Site is underlain by dense to very dense soils starting from shallow depths and the groundwater within the site is expected to be relatively deep. Further, the published earthquake hazards map indicates the site includes unconsolidated deposits with moderate to moderately high rigidity where depth to ground water is greater than $10 \mathrm{~m}(33 \mathrm{ft})$; also includes moderately indurated deposits with moderately high rigidity where depth to ground water is less than 10 m (33 ft) (Szecsody, 1983). Because of the consistency of site soils and absence of shallow groundwater, the potential for soil liquefaction within the site is considered low. The site exploration for the complete geotechnical investigation (currently in progress) will include advancement of deep borings. The data from these deep borings will be utilized to assess and provide any needed additional conclusions on the potential for soil liquefaction in the geotechnical report.

Flood Plains

The Federal Emergency Management Agency (FEMA) has identified the site as lying-in unshaded Zone X, or outside of a 500-year flood zone (FEMA, 2009; 2013b; 2013b).

Other Geologic Hazards

A high potential for dust generation is present if grading is performed in dry weather. Due to the dense nature of site soils, the site does not exhibit a potential for landslides. No other geologic hazards were identified.

Discussion and Preliminary Geotechnical Recommendations

The proposed project is feasible on a geotechnical standpoint. Based on our research/review and the geotechnical exploration completed to date, the subsurface materials within the project site predominantly consists of granular silty to clayey sand soils that will provide adequate support for proposed improvements in cuts and also as densified structural fill. A complete geotechnical investigation report with all necessary geotechnical recommendations for the project will be issued by CEI upon the completion of the remaining exploration tasks, laboratory testing and geotechnical analyses. Currently, we provide the following preliminary geotechnical recommendations for the proposed project:

1. All vegetation should be stripped and/or grubbed from all structural areas. A stripping depth of about 0.3 to 0.5 feet should be anticipated. Localized areas with heavy vegetation may require additional stripping depth. Vegetation and organic matters should be disposed offsite or in designated non-structural areas.
2. The subsurface soils encountered in the completed test pit and fault trench exploration to date are predominantly granular silty sand to clayey sand soils with low to moderate percentage of low to medium plasticity fines. These granular soils will provide adequate support for the
proposed improvements in cuts and will also be suitable to use as structural fill.

The surficial soil layer and some localized deep horizons include clay-rich and fine-grained soils. These clay and fine-grained soils should be mitigated via providing sufficient structural fill separation/support for improvements. When excavated these poor-quality soils should only be placed as fill in non-structural areas or beneath a structural fill separation within the exterior improvements.
3. Onsite materials were excavated using a medium-size excavator in test pits and fault trenches. It is anticipated that the mass grading should be possible using conventional medium to large earthwork equipment. Strongly cemented soils may pose some excavation/trenching difficulties
4. Temporary trenches with near-vertical sidewalls should be stable in onsite soils to a depth of approximately 4 feet. Excavations to greater depths in soils will require laying back of sidewalls at a slope no steeper than $1 \mathrm{H}: 1 \mathrm{~V}$ to maintain adequate stability. All trenching and excavation should conform to the State of Nevada, Department of Industrial Relations, Division of Occupational Safety and Health Administration (OSHA) standards (Code of Federal Regulations, 2010).
5. All structural fill within the building footprint and the structural fill placed in deep fill areas (fill thickness exceeding 8 feet) shall be placed in maximum 8-inch loose lifts, moisture conditioned, and compacted to 95 percent relative compaction per ASTM D 1557. All other structural fill shall be compacted to 90 percent relative compaction.
6. The project grading will involve cut and fill slopes that are up to about 40 feet in vertical height. Based on the consistency and type of materials encountered in our exploration, cut and fill slopes on the project will be globally stable at $2 \mathrm{H}: 1 \mathrm{~V}$ ratio or flatter. It is also emphasized that IBC (ICC, 2018) allow $2 \mathrm{H}: 1 \mathrm{~V}$ slopes on the type of materials encountered in our exploration. Slopes steeper than $3 \mathrm{H}: 1 \mathrm{~V}$ ratio should be mechanically stabilized against erosion; however, alternate erosion protection measures may also be considered with approval from governing agencies.
7. The project will include deep fills that will be subject to internal fill settlement. Areas exhibiting 10 feet or more fills should require a settlement waiting period in the range of 60 to 90 days from the completion of the pad grades prior to construction of building footings. Settlement monitoring via establishment of survey monuments within deep fill areas is also recommended.
8. Individual column footings and continuous wall footings underlain by properly prepared onsite soils or compacted structural fill can be designed for a net maximum allowable bearing pressure in the range of 2,500 to 3,000 pounds per square foot.
9. Paved areas subject to truck traffic should consist of 4 inches of asphalt concrete underlain by 6 inches of Type 2, Class B aggregate base (Standard Specifications for Public Works Construction [SSPWC], 2016). Paved areas restricted to automobile parking can consist of 3 inches of asphalt concrete underlain by 6 inches of Type 2, Class B aggregate base (SSPWC, 2016).
10. A coefficient of subgrade reaction (K-value) in the range of 125 to 150 pounds per cubic inch is appropriate for use in design of the building floor slabs.
11. Truck PCC loading dock ramps and any other PCC slabs subject to vehicle loading should be a minimum of 6 inches of 4,000 pounds per square inch PCC overlying 6 inches of Type 2, Class B aggregate base (SSPWC, 2016).

Closing

We appreciate being of service to you on this project. If you have any questions or require any additional information, please do not hesitate to contact us.

Sincerely,

Corestone Engineering, Inc.

Vimal P. Vimalaraj, P.E., G.E.
President
PV:pv/kv
Enclosure: Appendix A - Preliminary Quaternary Fault Map

Copies to: Addressee (PDF)
Mr. Paul Kinne, Panattoni Development Company (PDF)
Mr. Ryan Switzer, PE, Robison Engineering Company, Inc. (4 copies and PDF)

References

American Society of Civil Engineers (ASCE), 2022, ASCE 7 Hazard Tool. Online at https://asce7hazardtool.online, accessed February 2022.

American Society for Testing and Materials (ASTM), 2018, Soil and Rock, Volumes 4.08 and 4.09.
Code of Federal Regulations, 2010, Title 29, Part 1926, Subpart P - Excavations.
Federal Emergency Management Agency (FEMA), 2009 (March 16, 2009), Flood Insurance Rate Map 32031C2800G, Washoe County, Nevada and Incorporated Areas. Panel Not Printed.

FEMA, 2013a (June 18, 2013), Flood Insurance Rate Map 32031C2813H, Washoe County, Nevada and Incorporated Areas.

FEMA, 2013b (June 18, 2013), Flood Insurance Rate Map 32031C2825H, Washoe County, Nevada and Incorporated Areas.

International Code Council, 2018, International Building Code (IBC).
Nevada Bureau of Mines and Geology (NBMG), 2022, MyHazards web-mapping tool, located at https://gisweb.unr.edu/MyHAZARDS/, accessed January 2022

Nevada Earthquake Safety Council (NESC), November 1998, Guidelines for Evaluating Potential Surface Fault Rupture/Land Subsidence Hazards in Nevada, Available online at http://www.nbmg.unr.edu/nesc/NESC Seismic Building Guidelines/index.html.

Soeller, S. A. and R. L. Nielsen, 1980, Geologic Map of the Reno NW Quadrangle; Nevada Bureau of Mines and Geology, Map 4Dg.

Standard Specifications for Public Works Construction (SSPWC), 2016 (Washoe County, Sparks-Reno, Carson City, Yerington, Nevada).

Szecsody, G. C., 1983, Earthquake Hazards Map, Reno NW Quadrangle: Nevada Bureau of Mines and Geology, Map 4Di.

APPENDIX A

PRELIMINARY QUATERNARY FAULT MAP

[^0]: *L: Left, R: Right, T: Thru, U: U-Turn

[^1]: *L: Left, R: Right, T: Thru, U: U-Turn

[^2]: * L: Left, R: Right, T: Thru, U: U-Turn

[^3]: * L: Left, R: Right, T: Thru, U: U-Turn

[^4]: * L: Left, R: Right, T: Thru, U: U-Turn

[^5]: * L: Left, R: Right, T: Thru, U: U-Turn

[^6]: * L: Left, R: Right, T: Thru, U: U-Turn

[^7]: *L: Left, R: Right, T: Thru, U: U-Turn

[^8]: *L: Left, R: Right, T: Thru, U: U-Turn

[^9]: * L: Left, R: Right, T: Thru, U: U-Turn

[^10]: *L: Left, R: Right, T: Thru, U: U-Turn

