PRELIMINARY SANITARY SEWER REPORT

FOR

Prado Ranch - Area 4 Tentative Map

Prepared for:

Lansing Companies
12671 High Bluff Drive, Suite 150
San Diego, CA 92130

January 12, 2018

Prepared by:
Wood Rodgers Inc.
1361 Corporate Boulevard
Reno, Nevada 89502
(775) 823-4056

Mark Cendagorta, PE - Principal

TABLE OF CONTENTS

1 Introduction 1
2 Background 1
3 Proposed Conditions 2
4 Conclusion 5

Tables

Table 1: Land Use Categories
Table 2: Proposed Contributions

APPENDIX

Vicinity Map
figure 1-EXISting facilities exhibit
FIGURE 2-PROPOSED CONDITIONS EXHIBIT
Figure 3-proposed facilities exhibit

1 INTRODUCTION

This report shall serve as the preliminary sanitary sewer report for the Prado Ranch Area 4 subdivision, which will consist of 538 single family lots. The proposed project site (a portion of APN's 080-723-01, 02, 03 and 04) is approximately $146.3 \pm$ acres in size and is located within portions of Sections 22 and 23 of T21N, R19E, MDM, City of Reno, Washoe County, Nevada. The project site is bounded by Lemmon Drive to the west, existing single family housing to the north, undeveloped land to the east and Nectar Street to the south. Area 4 is a portion of the larger Prado Ranch landholding, which also includes approximately 445 acres located to the south that was annexed into the City of Reno in 2015 and is currently in process for entitlements (Planned Unit Development-PUD) to develop a mix of single family, multi-family, industrial and commercial uses. As the timing of approval for the PUD entitlements through the City of Reno is unknown at this time, the PUD will be considered not a part for the purposes of this preliminary report. A Vicinity Map is included in the Appendix of this report for reference. As this report is preliminary in nature, a more detailed study will need to be conducted and a final technical sewer report will need to be submitted, with the final improvement plans for the project.

2 BACKGROUND

The $146.3 \pm$ acre site is undeveloped and surrounded by existing large lot residential to the northwest and southeast. An undeveloped area of the larger Prado Ranch landholding exists to the north of the subject site, and to the west of Lemmon Drive and adjacent to Swan Lake. The westernmost portion of the site is located within the FEMA mapped 100-year floodplain and will require placement of additional fill within the Swan Lake Floodplain. The existing topography consists of relatively flat slopes ($0.2 \%-1 \%$) trending generally from northeast to southwest towards Swan Lake.

The Prado Ranch Area 4 concept envisions a mix of lot sizes in multiple villages along with open space corridors and park areas to create a cohesive project. The majority of lots within each village range between 5,000 sf and 7,000 sf while perimeter lots abutting existing residential are approximately 15,000 sf. The project will be constructed in multiple phases, of which the exact sequence is yet to be determined at this time. The development plan for Prado Ranch Area 4 includes the following village breakdown and acreages:

Table 1: Land Use Categories

Land Use Designation	Gross Acres	Proposed Lot Count	Allowable Dwelling Units (4 du/ac max)	Density
Village 1				
Single Family Residential	$24.0 \pm$	108 lots	96	4.5
Village 2				
Single Family Residential	40.5 \pm	148 lots	162	3.65
Village 3				
Single Family Residential	41.2土	131 lots	164	3.98
Village 4				
Single Family Residential	$40.6 \pm$	151 lots	162	3.72
Totals	146.3土	538 lots	584	3.68

The project site resides outside of existing municipal sanitary sewer service areas, and is located approximately 1.5 miles to the north of the existing Washoe County owned and operated Lemmon Valley Wastewater Treatment Plant (LVWTP). There is no sanitary sewer infrastructure in place between the LVWTP and the project site, and per recent conversations with Washoe County representatives, the LVWTP does not have sufficient treatment capacity to serve the project. As such, development of the site requires construction of sanitary sewer infrastructure to convey flows to the City of Reno owned and operated Reno Stead Water Reclamation Facility (RSWRF), where additional treatment capacity is currently available. The conveyance of flows to the RSWRF will require an inter-local agreement between the City of Reno and Washoe County for sewage treatment and disposal. It is anticipated that this infrastructure will be designed and constructed to public standard, and oversized to accommodate future growth, which will aid in the development of adjacent areas located outside of the project boundaries. (Reference Figure 1Existing Facilities Exhibit)

In response to growth projections in the North Valleys, the City of Reno and Washoe County have jointly commissioned a sanitary sewer study and master plan for the area which analyzes the existing infrastructure in place (both conveyance and treatment), identifies existing uses and proposed developments that have or will contribute flows to the system, and provides capital expenditure recommendations to provide additional capacity for future growth. The study prepared by Stantec and entitled North Valleys Sanitary Sewer Capacity Analysis and Master Plan, November 2017, recommends utilizing existing treatment capacity at the regional Truckee Meadows Water Reclamation Facility (TMWRF) in the near term until the growth projections for the North Valleys are proven and would thereby warrant the large capital costs necessary to
increase treatment capacity at the RSWRF. As such, the study recommends as capital expenditures in the near term, conveyance and pumping capacity projects that would redirect flows from the LVWTP and the RSWRF to TMWRF, thereby freeing up additional capacity at both plants in the North Valleys.

Currently, the RSWRF is treating approximately 1,500,000 gpd with capacity to treat approximately 2,000,000 gpd according to information provided by representatives from Washoe County and the City of Reno at a joint meeting to discuss the project. That equates to approximately $500,000 \mathrm{gpd}$ of available capacity at the plant. Of note is the ability for the RSWRF to increase total treated capacity to $2,300,000 \mathrm{gpd}$, or an additional 300,000 gpd beyond the current capacity, with relatively lower cost improvements that do not require extensive Nevada Division of Environmental Protection (NDEP) permitting measures. This limited expansion is referred to as Phase 1, while a larger scale project to expand the plant capacity by an additional 2,500,000 gpd is referred to as Phase 2. The Phase 2 expansion carries a large capital cost in terms of plant expansion and effluent disposal, as well as a longer permitting process through NDEP. In total, the available treatment capacity, with the additional $300,000 \mathrm{gpd}$ treatment considered at the RSWRW, is approximately $800,000 \mathrm{gpd}$.

City of Reno Staff, at a joint City Council and Planning Commission workshop in February of 2017, also identified two projects for capital expenditure that will, if implemented, redirect flows to TMWRF. The first, identified as the North Hills Lift Station Improvements project to be located near Buck Drive, will replace two aging lift stations and will redirect flows from the LVWTP to TMWRF, freeing up an additional 70,000 gpd of treatment capacity at that plant. That project is currently in design, and slated for near term construction. The second project, identified as the Sky Vista II Lift Station Improvements project to be located on Lear Boulevard just east of Military Road, will replace an existing lift station and redirect flows from the RSWRF to TMWRF, freeing up an additional 700,000 gpd of treatment capacity at that plant. The Sky Vista II Lift Station Improvements project is currently projected for the 2020 to 2021 timeframe. In total, both projects would free up an additional 770,000 gpd of additional treatment capacity at the two plants in the North Valleys.

3 Proposed CONDITIONS

As the project site is devoid of existing sanitary sewer infrastructure, new collection and conveyance networks will be required for individual villages within the overall project. These systems are anticipated to be typical gravity networks designed to Washoe County standards, and are proposed to be public as they will be located within public roadways serving each village. The

project will require the construction of a lift station and associated force main to convey flows to the RSWRF. (Reference Figure 2-Proposed Conditions Exhibit)

The following table estimates the proposed sewerage contribution from the project in relation to Washoe County's minimum sewer system requirements.

Table 2: Proposed Contributions

Land Use	Quantity	Unit Rate	$\begin{gathered} \text { Peak Flow* } \\ \text { (gpd) } \\ \hline \end{gathered}$	Treated Flow** (gpd)
Village 1	108 Lots	270 gal/day*3.0 PF	87,480	34,992
Village 2	148 Lots	270 gal/day*3.0 PF	119,880	47,952
Village 3	131 Lots	270 gal/day*3.0 PF	106,110	42,444
Village 4	151 Lots	270 gal/day*3.0 PF	122,310	48,924
Open Space	13.2 Acres	664 gal/day/acre*3.0 PF	26,294	10,518
TOTAL			462,074	184,830

*Peak flow design values per the Washoe County Design Standards
**Treated flow design values equivalent to peak flow divided by a factor of 2.5

As can be seen above, the current available treatment capacity at the RSWRF ($\pm 500,000 \mathrm{gpd}$) exceeds the estimated project contribution ($184,830 \mathrm{gpd}$) at total buildout. Should the two capital improvement projects detailed above along with the possible Phase 1 RSWRF plant expansion be implemented, the available treatment capacity would far exceed the estimated project contribution. Note the difference between peak flow and treated flow rates in the table. Peak flow rates are used for conveyance system design, while treated flow rates are commonly estimated by dividing the peak flow rates by a factor of 2.5 . The anticipated treated flows are thereby slightly higher than the estimated average daily flows (3.0 peaking factor not applied) for a measure of conservatism.

It is anticipated that the lift station and force main infrastructure will be designed and constructed as public facilities, and would include oversizing flexibility to accommodate future growth. The lift station is currently proposed to be constructed on property that is part of the larger Prado Ranch landholding to the south and west of the project site and adjacent to Swan Lake. The force main would be constructed from the lift station along Lemmon Drive and the within the future alignment for Lear Boulevard to the RSWRF. (Reference Figure 2-Proposed Conditions Exhibit)

Based upon recent discussions with City of Reno and Washoe County representatives, the lift station and force main may also be designed in accordance with the Lemmon Drive II Lift Station Improvements project identified in the Stantec study for years 2022 to 2023, which includes construction of a lift station at the outfall to the LVWTP and associated force main within Lear

Boulevard to the RSWRF. The Lemmon Drive II Lift Station project is intended to divert flows to the RSWRF with the long range goal of decommissioning the LVWTP. The design and construction delivery method for the lift station and force main will depend upon a number of factors including timing and implementation of public capital expenditures, but the opportunity exists for a public/private partnership to meet certain goals of the sewer master plan for the North Valleys on an accelerated schedule while also allowing for full development of the proposed project. Should the lift station and force main be constructed by the master developer, it is anticipated that any upsizing to accommodate future growth outside of the project limits would be subject to a development agreement with Washoe County and the City of Reno and eligible for cost reimbursement.

4 CONCLUSION

Prior to development of any portion of the proposed project, the developer will be required to provide a full technical sanitary sewer study that not only details the conveyance system design but verifies treatment capacity exists for the project. The technical studies will be provided in accordance with the final mapping application for the first subdivision, and will include an analysis for the project in total. As the treatment capacity at the RSWRF is limited and recognizing that other projects in the tributary area to the plant will utilize portions of the existing capacity as they come online, an analysis of the plant capacity at the time of each final map application will be necessary.

5 REFERENCES

Washoe County Community Services Department Gravity Sewer Collection Design Standards, March 2017.

North Valleys Sanitary Sewer Capacity Analysis and Master Plan, Stantec, November 2017.

APPENDIX

Vicinity Map

Figure 1-existing facilities exhibit
FIGURE 2-PROPOSED CONDITIONS EXHIBIT
FIGURE 3-PROPOSED FACILITIES EXHIBIT

Vicinity Map
Prado Ranch Area 4
December， 2017

EXISTING SS

\longrightarrow GRAVITY MAIN
－－FORCE MAIN
LIFT STATION
is ExISTING
最目四Project Area－Washoe County
－Project Area－City of Reno（Not a Part）

740

SWAN LAKE

Arkansas Dive

FIGURE 2

PRADO RANCH AREA 4

TRAFFIC STUDY

JANUARY, 2018

Prepared by:
Solaegui Engineers, Ltd.
715 H Street
Sparks, Nevada 89431
(775) 358-1004

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3
INTRODUCTION 4
STUDY AREA 4
EXISTING AND PROPOSED LAND USES4
EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS 4
TRIP GENERATION 7
TRIP DISTRIBUTION AND ASSIGNMENT 7
EXISTING AND PROJECTED TRAFFIC VOLUMES 7
INTERSECTION CAPACITY ANALYSIS 13
SITE PLAN REVIEW 17
RECOMMENDATIONS 18
APPENDIX 19
LIST OF FIGURES
FIGURE 1 - VICINITY MAP. 5
FIGURE 2 - TRIP DISTRIBUTION8
FIGURE 3 - TRIP ASSIGNMENT 9
FIGURE 4 - EXISTING TRAFFIC VOLUMES 10
FIGURE 5 - EXISTING PLUS PROJECT TRAFFIC VOLUMES 11
FIGURE 6-2028 TRAFFIC VOLUMES 12

PRADO RANCH AREA 4 TRAFFIC STUDY

EXECUTIVE SUMMARY

The proposed Prado Ranch Area 4 development will be located in Washoe County, Nevada. The project site is located north of Nectar Street, south of Tupelo Street, east of Lemmon Drive, and west of Chesapeake Drive. The project site is currently undeveloped land. The purpose of this study is to address the project's impact upon the adjacent street network. The Lemmon Drive intersections with Sky Vista Parkway-Buck Drive, Military Drive, Arkansas Drive, Nectar Street, Chickadee Drive, and Prado Ranch Boulevard have been identified for AM and PM peak hour capacity analysis for the existing, existing plus project, and 2028 scenarios.

The proposed Prado Ranch Area 4 development will consist of the construction of a residential subdivision containing 538 single family detached homes. The project is anticipated to generate 4,939 average daily trips with 386 trips occurring during the AM peak hour and 478 trips occurring during the PM peak hour.

Traffic generated by Prado Ranch Area 4 will have some impact on the adjacent street network. The following recommendations are made to mitigate project buildout traffic impacts.

It is recommended that any required signing, striping, or traffic control improvements comply with Washoe County requirements.

It is recommended that the Lemmon Drive/Nectar Street intersection be improved to include an exclusive right turn lane at the south approach containing 245 feet of storage/deceleration length with a 100 foot taper.

It is recommended that the Lemmon Drive/Prado Ranch Boulevard intersection be designed to include stop sign control and separate left and right turn lanes at the east approach and an exclusive right turn lane at the south approach containing 245 feet of storage/deceleration length with a 100 foot taper.

It is recommended that the Nectar Street access road shown on the project site plan be eliminated and a new access connection be provided on Nectar Street from an extension of the most easterly internal north/south street. It is recommended that the segment of this new connection road between Nectar Street and the first internal east/west street be designed to collector street standards.

INTRODUCTION

STUDY AREA

The proposed Prado Ranch Area 4 development will be located in Washoe County, Nevada. The project site is located north of Nectar Street, south of Tupelo Street, east of Lemmon Drive, and west of Chesapeake Drive. Figure 1 shows the location of the project site. The purpose of this study is to address the project's impact upon the adjacent street network. The Lemmon Drive intersections with Sky Vista Parkway-Buck Drive, Military Drive, Arkansas Drive, Nectar Street, Chickadee Drive, and Prado Ranch Boulevard have been identified for AM and PM peak hour capacity analysis for the existing, existing plus project, and 2028 scenarios.

EXISTING AND PROPOSED LAND USES

The project site is currently undeveloped land. Adjacent properties generally include single family homes and undeveloped land to the north, single family homes to the east and south, and undeveloped land to the west. The proposed Prado Ranch Area 4 development will consist of the construction of a residential subdivision containing 538 single family detached homes.

EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS

Lemmon Drive is a six-lane roadway from US-395 to Sky Vista Parkway, a four-lane roadway from Sky Vista Parkway to Fleetwood Drive, and a two-lane roadway north of Fleetwood Drive. The speed limit is posted for 45 miles per hour except for 35 mile per hour zones south of Sky Vista Parkway and from Hydraulic Street to south of Palace Drive. Roadway improvements generally include curb, gutter and sidewalk in developed areas and paved or graded shoulders in undeveloped areas. Raised center medians exist near the Sky Vista Parkway and Military Road intersections, a depressed median exists north of Military Road to Fleetwood Drive, and centerline striping exists on the two-lane segment.

Sky Vista Parkway is a four-lane roadway with two through lanes in each direction from Lemmon Drive to Vista Knoll Parkway. The speed limit is posted for 35 miles per hour. Roadway improvements include curb, gutter, sidewalk and a bike lane on both sides of the street and a raised center median or center two-way left turn lane. The roadway narrows to one lane in each direction west of Vista Knoll Parkway.

Buck Drive is a three-lane roadway with two eastbound lanes and one westbound lane from Lemmon Drive to the shopping center's east driveway. The speed limit is not posted. Roadway improvements include curb, gutter, sidewalk and a bike lane on both sides of the street and a center two-way left turn lane.

Arkansas Drive is a two-lane roadway with one through lane in each direction east of Lemmon Drive. The speed limit is posted for 25 miles per hour. Roadway improvements generally include paved travel lanes and graded shoulders.

PRADO RANCH AREA 4

Military Road is a four-lane roadway with two through lanes in each direction just west of Lemmon Drive and a two-lane roadway with one through lane in each direction further north to Echo Avenue. The speed limit is posted for 45 miles per hour. Roadway improvements generally include curb, gutter, sidewalk, and a bike lane on both sides of the four-lane roadway and bike lanes and graded shoulders on the two-lane section. Some curb, gutter, and sidewalk improvements exist on the two-lane section in developed areas.

Nectar Street is a two-lane roadway with one through lane in each direction east of Lemmon Drive. The speed limit is posted for 25 miles per hour. Roadway improvements generally include paved travel lanes and graded shoulders.

Chickadee Drive is a two-lane roadway with one through lane in each direction east of Lemmon Drive. The speed limit is posted for 25 miles per hour. Roadway improvements generally include paved travel lanes and graded shoulders. Chickadee Drive between Lemmon Drive and Chesapeake Drive will be replaced with Prado Ranch Boulevard with development of the project. Prado Ranch Boulevard will be constructed as a major arterial road from Lemmon Drive to the project's northeast boundary.

The Lemmon Drive/Sky Vista Parkway-Buck Drive intersection is a signalized four-leg intersection with protected phasing for all left turn movements. The north and south approaches each contain dual left turn lanes, two through lanes, and one shared through-right turn lane. The west approach contains one left turn lane, one through lane, and dual right turn lanes. The east approach contains one left turn lane, one through lane, and one right turn lane. Crosswalks exist at all approaches.

The Lemmon Drive/Military Road intersection is a signalized four-leg intersection with protected left turn phasing at the north and south approaches. The north approach contains one left turn lane, one through lane, and one shared through-right turn lane. The south approach contains dual left turn lanes, one through lane and one shared through-right turn lane. The west approach contains one shared left turn-through lane and one free right turn lane with a southbound acceleration lane. The east approach serves a church and contains one shared left turn-through-right turn lane.

The Lemmon Drive/Arkansas Drive intersection is an unsignalized three-leg intersection with stop sign control at the east approach. The north approach contains one shared left turn-through lane. The south approach contains one shared through-right turn lane. The east approach contains one shared left turn-right turn lane.

The Lemmon Drive/Nectar Street intersection is an unsignalized three-leg intersection with stop sign control at the east approach. The north approach contains one shared left turn-through lane. The south approach contains one shared through-right turn lane. The east approach contains one shared left turn-right turn lane.

The Lemmon Drive/Chickadee Drive intersection is an unsignalized three-leg intersection with stop sign control at the east approach. The north approach contains one shared left turn-through lane. The south approach contains one shared through-right turn lane. The east approach contains one shared left turn-right turn lane. This intersection will be eliminated with development of the project.

The Lemmon Drive/Prado Ranch Boulevard intersection is anticipated to be constructed as an unsignalized three-leg intersection with stop sign control at the east approach with development of the project. The intersection will be analyzed with single lanes at all approaches.

TRIP GENERATION

In order to assess the magnitude of traffic impacts of the proposed development on the key intersections, trip generation rates and peak hours had to be determined. Trip generation rates were obtained from the Ninth Edition of ITE Trip Generation (2012) for Land Use 210: Single Family Detached Housing. Trip generation was calculated for the peak hours occurring between 7:00 AM and 9:00 AM and 4:00 PM and 6:00 PM which correspond to the peak hours of adjacent street traffic. Table 1 shows a summary of the average daily traffic volumes and peak hour volumes generated by the project. The trip generation worksheet is included in the Appendix.

TABLE 1 TRIP GENERATION							
LAND USE	AM PEAK HOUR	PM PEAK HOUR					
Single Family (538 Dwelling Units)		97	289	386	301	177	478

TRIP DISTRIBUTION AND ASSIGNMENT

The distribution of project trips to the key intersections was based on existing peak hour traffic patterns and the locations of attractions and productions in the area. Figure 2 shows the anticipated trip distribution. The peak hour trips were assigned to the key intersections based on this distribution. Figure 3 shows the AM and PM peak hour trip assignment.

EXISTING AND PROJECTED TRAFFIC VOLUMES

Figure 4 shows the existing traffic volumes at the key intersections during the AM and PM peak hours. The existing traffic volumes were obtained from traffic counts taken in December of 2017 and from RTC's North Valleys Multimodal Transportation Study. Figure 5 shows the existing plus project traffic volumes at the key intersections during the AM and PM peak hours. The existing plus project volumes were obtained by adding the trip assignment volumes shown on Figure 3 to the existing traffic volumes shown on Figure 4. Figure 6 shows the 2028 traffic volumes at the key intersections during the AM and PM peak hours. The 2028 traffic volumes were estimated based on a review of existing traffic volumes presented in this study and 2035 traffic volumes obtained from the North Valleys Multimodal Transportation Study. Prado Ranch was listed as a planned 20-year forecast project in the North Valleys Multimodal Transportation Study. The 2028 volumes are a combination of Prado Ranch buildout volumes and factored 2035 volumes.

SOLAEGUI
 ENGINEERS LTD.

INTERSECTION CAPACITY ANALYSIS

The key intersections were analyzed for capacity based on procedures presented in the Highway Capacity Manual (6th Edition), prepared by the Transportation Research Board, for unsignalized and signalized intersections using the latest version of the Highway Capacity software.

The result of capacity analysis is a level of service (LOS) rating for each signalized intersection or minor movement at a two-way stop controlled intersection. Level of service is a qualitative measure of traffic operating conditions where a letter grade "A" through " F ", corresponding to progressively worsening traffic operation, is assigned to the signalized intersection or unsignalized intersection minor movement.

The Highway Capacity Manual defines level of service for stop controlled intersections in terms of computed or measured control delay for each minor movement. Level of service is not defined for the intersection as a whole. The level of service criteria for unsignalized intersections is shown in Table 2.

TABLE 2	
LEVEL OF SERVICE	DELAY RANGE (SEC/VEH)
A	≤ 10
B	>10 and ≤ 15
C	>15 and ≤ 25
D	>25 and ≤ 35
E	>35 and ≤ 50
F	>50

Level of service for signalized intersections is stated in terms of the average control delay per vehicle for a peak 15 minute analysis period. The level of service criteria for signalized intersections is shown in Table 3.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS	
LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (SEC)
A	≤ 10
B	>10 and ≤ 20
C	>20 and ≤ 35
D	>35 and ≤ 55
E	>55 and ≤ 80
F	>80

Table 4 shows a summary of the level of service and delay results at the key intersections for the existing, existing plus project, and 2028 scenarios. The level of service worksheets are included in the Appendix.

TABLE 4 INTERSECTION LEVEL OF SERVICE AND DELAY RESULTS						
INTERSECTION	EXISTING		$\begin{aligned} & \text { EXISTING } \\ & + \text { PROJECT } \end{aligned}$		2028	
	AM	PM	AM	PM	AM	PM
Lemmon/Sky Vista/Buck (Signal)	C30.5	D35.8	C32.2	D37.3	D51.0	F115.2
Lemmon/Military (Signal)	B16.3	B16.4	B16.9	B16.9	C33.4	C31.2
Lemmon/Arkansas (Stop at East) WB Left-Right SB Left	$\begin{gathered} \text { B10.7 } \\ \text { A7.4 } \end{gathered}$	$\begin{gathered} \text { B11.9 } \\ \text { A8.0 } \end{gathered}$	$\begin{gathered} \text { C15.1 } \\ \text { A7.6 } \end{gathered}$	$\begin{gathered} \text { C18.8 } \\ \text { A9.0 } \end{gathered}$	$\begin{gathered} \text { C16.9 } \\ \text { A7.7 } \end{gathered}$	$\begin{gathered} \text { C24.5 } \\ \text { A9.5 } \end{gathered}$
Lemmon/Nectar (Stop at East) WB Left-Right SB Left	$\begin{gathered} \text { B10.5 } \\ \text { A7.4 } \end{gathered}$	$\begin{gathered} \text { B11.5 } \\ \text { A7.9 } \end{gathered}$	$\begin{array}{r} \text { C16.5 } \\ \text { A7.6 } \end{array}$	$\begin{gathered} \text { C20.1 } \\ \text { A8. } \end{gathered}$	$\begin{gathered} \text { C19.7 } \\ \text { A7.7 } \end{gathered}$	$\begin{gathered} \text { D31.4 } \\ \text { A9.4 } \end{gathered}$
Lemmon/Chickadee (Stop at East) WB Left-Right SB Left	$\begin{gathered} \text { B10.1 } \\ \text { A7.3 } \end{gathered}$	$\begin{gathered} \text { B11.0 } \\ \text { A7.8 } \end{gathered}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$
Lemmon/Prado Ranch (Stop at East) WB Left-Right SB Left	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{gathered} \text { B11.9 } \\ \text { A7.4 } \end{gathered}$	$\begin{gathered} \mathrm{B} 13.4 \\ \mathrm{~A} 8.2 \end{gathered}$	$\begin{gathered} \mathrm{B} 13.4 \\ \text { A7.6 } \end{gathered}$	$\begin{gathered} \mathrm{C} 17.8 \\ \mathrm{~A} 8.6 \end{gathered}$

Lemmon Drive/Sky Vista Parkway-Buck Drive Intersection

The Lemmon Drive/Sky Vista Parkway/Buck Drive intersection was analyzed as a signalized fourleg intersection with the existing approach lanes for all scenarios. The intersection currently operates at LOS C with a delay of 30.5 seconds per vehicle during the AM peak hour and LOS D with a delay of 35.8 seconds per vehicle during the PM peak hour. For the existing plus project traffic volumes the intersection operates at LOS C with a delay of 32.2 seconds per vehicle during the AM peak hour and LOS D with a delay of 37.3 seconds per vehicle during the PM peak hour. For the 2028 traffic volumes the intersection is anticipated to operate at LOS D with a delay of 51.0 seconds per vehicle during the AM peak hour and LOS F with a delay of 115.2 seconds per vehicle during the PM peak hour. The intersection meets RTC's policy LOS E or better standard for the existing and existing plus project scenarios but not for the 2028 scenario. The North Valleys Multimodal Transportation Study recommends long-term intersection capacity improvements at this intersection that will include a combination of measures such as adding additional through lanes or turning lanes, lengthening existing turn pockets, upgrading intersection control, signal timing optimization and coordination, and upgrade to a roundabout.

Lemmon Drive/Military Road Intersection

The Lemmon Drive/Military Road intersection was analyzed as a signalized four-leg intersection with the existing approach lanes for all study scenarios. The intersection currently operates at LOS B with a delay of 16.3 seconds per vehicle during the AM peak hour and 16.4 seconds per vehicle during the PM peak hour. For the existing plus project traffic volumes the intersection is anticipated to continue to operate at LOS B with delays slightly increasing to 16.9 seconds per vehicle during both the AM and PM peak hours. For the 2028 traffic volumes the intersection is anticipated to operate at LOS C with a delay of 33.4 seconds per vehicle during the AM peak hour and 31.2 seconds per vehicle during the PM peak hour. The intersection meets RTC's policy LOS E or better standard for all scenarios.

Lemmon Drive/Arkansas Drive Intersection

The Lemmon Drive/Arkansas Drive intersection was analyzed as an unsignalized three-leg intersection with stop control at the east approach for all scenarios. The intersection minor movements currently operate at LOS B or better during the AM and PM peak hours. For the existing plus project volumes the intersection minor movements operate at LOS C or better during the AM and PM peak hours. For the 2028 traffic volumes the intersection minor movements operate at LOS C or better during the AM and PM peak hours. The intersection was analyzed with the existing lanes for all scenarios. The intersection meets RTC's policy LOS D or better standard for all study scenarios.

Lemmon Drive/Nectar Street Intersection

The Lemmon Drive/Nectar Street intersection was analyzed as an unsignalized three-leg intersection with stop control at the east approach for all study scenarios. The intersection minor movements currently operate at LOS B or better during the AM and PM peak hours. For the existing plus project volumes the intersection minor movements operate at LOS C or better during the AM and PM peak hours. For the 2028 traffic volumes the intersection minor movements operate at LOS D or better during the AM and PM peak hours. The intersection was analyzed with the existing lanes for all scenarios. The intersection meets RTC's policy LOS D or better standard for all study scenarios.

The need for an exclusive right turn deceleration lane on Lemmon Drive at Nectar Street was reviewed based on RTC's access management standards. The access management standards indicate that right turn deceleration lanes are required on moderate access control arterials (Lemmon Drive) if the right turn movement serves more than 60 vehicles per hour. An exclusive right turn deceleration lane is required based on the existing plus project traffic volumes. A minimum deceleration length of 145 feet is required for the right turn lane based on the 45 mile per hour speed limit on Lemmon Drive and a 100 foot minimum taper is required based on RTC's Regional Traffic Guidelines. It is recommended that 100 feet of storage length also be provided for the right turn lane.

The need for an exclusive left turn lane on Lemmon Drive at Nectar Street was reviewed based on AASHTO guidelines for left turn lanes on two-lane roadways. Table 9-23 of the AASHTO publication lists traffic volumes and operating speeds which necessitate the need for left turn lanes on two-lane roads. The traffic volumes to be considered include advancing traffic volumes, opposing traffic volumes, and the percent of advancing traffic which is turning left. The existing plus project and 2028 traffic volumes do not meet the requirements for an exclusive left turn lane based on the 45 mile per hour speed limit on Lemmon Drive.

Lemmon Drive/Chickadee Drive (Prado Ranch Boulevard) Intersection

The Lemmon Drive/Chickadee Drive intersection was analyzed as an unsignalized three-leg intersection with stop control at the east approach for only the existing scenario. The intersection minor movements currently operate at LOS B or better during the AM and PM peak hours. The Lemmon Drive/Prado Ranch Boulevard intersection was analyzed as an unsignalized three-leg intersection with stop control at the east approach for the existing plus project and 2028 scenarios. The intersection minor movements operate at LOS B or better during the AM and PM peak hours for the existing plus project volumes and LOS C or better during the AM and PM peak hours for 2028 volumes. The intersection meets RTC's policy LOS D or better standard for all scenarios. The intersection was analyzed with single lanes at each approach for all scenarios. However, it is recommended that the east approach contain separate left and right turn lanes.

The need for an exclusive left turn lane on Lemmon Drive at Prado Ranch Boulevard was reviewed based on AASHTO guidelines for left turn lanes on two-lane roadways. Table 9-23 of the AASHTO publication lists traffic volumes and operating speeds which necessitate the need for left turn lanes on two-lane roads. The traffic volumes to be considered include advancing traffic volumes, opposing traffic volumes, and the percent of advancing traffic which is turning left. The existing plus project and 2028 traffic volumes do not meet the requirements for an exclusive left turn lane based on the 45 mile per hour speed limit on Lemmon Drive.

The need for an exclusive right turn deceleration lane on Lemmon Drive at Prado Ranch Boulevard was reviewed based on RTC's access management standards. The access management standards indicate that right turn deceleration lanes are required on moderate access control arterials (Lemmon Drive) if the right turn movement serves more than 60 vehicles per hour. A northbound right turn deceleration lane is required based on the existing plus project traffic volumes. A minimum deceleration length of 145 feet is required for the right turn lane based on the 45 mile per hour speed limit on Lemmon Drive and a minimum 100 foot taper is required based on RTC's Regional Traffic Guidelines. It is recommended that 100 feet of storage length also be provided for the right turn lane.

SITE PLAN REVIEW

A copy of the site plan for the Prado Ranch Area 4 development is included with this submittal. The site plan indicates that the project is divided into four villages and includes a newly proposed arterial roadway, Prado Ranch Boulevard, which will extend off Lemmon Drive, run northeasterly through the site, and terminate at the project's northeast boundary. Prado Ranch Boulevard will replace the existing segment of Chickadee Drive between Lemmon Drive and Chesapeake Drive. The site plan also indicates that a new segment of Chickadee Drive will be constructed between Chesapeake Drive and Prado Ranch Boulevard near the project's northeast boundary. Access to the project's four villages will be provided from two access roads intersecting Prado Ranch Boulevard and one access road each intersecting Nectar Street and Chickadee Drive.

Average daily traffic volumes were subsequently reviewed on the access roads intersecting Prado Ranch Boulevard, Nectar Street, and Chickadee Drive in order to determine if they meet Washoe County street loading standards. Washoe County street standards indicate that local streets can carry $1,000 \mathrm{ADT}$ or less and collector streets can carry up to $7,300 \mathrm{ADT}$. Collector streets with residential driveways can carry a maximum volume of $2,000 \mathrm{ADT}$.

The site plan indicates that the two access roads from Prado Ranch Boulevard serving the northwest portion of the site and the access road from Chickadee Drive are designated local streets. These three access roads are each anticipated to serve less than 1,000 vehicles per day which meet local street standards. The access road from Prado Ranch Boulevard serving the southern portion of the site is designated a collector street. This access road will serve traffic volumes that are well under the 7,300 vehicle per day threshold for collector streets.

The site plan indicates that the access road from Nectar Street is designated a local street. This access road is estimated to serve approximately 2,700 vehicles per day due to its close proximity to Nectar Street and Lemmon Drive. This access road from Nectar Street and potentially other internal roads will exceed the 1,000 vehicle per day threshold for local streets. The access road from Nectar Street will also exceed the 2,000 vehicle per day threshold for a collector with residential driveway access allowed. An alternate Nectar Street access location was subsequently reviewed. Relocating the Nectar Street access further east is anticipated to increase travel times along this route. The increased travel times will reduce the number of lots served by Nectar Street while increasing the number of lots served by Prado Ranch Boulevard. It is recommended that the Nectar Street westerly access shown on the site plan be eliminated and a new Nectar Street access be provided from an extension of the most easterly internal street. The segment between Nectar Street and the first east-west street is anticipated to serve approximately 1,400 vehicles per day which will require a collector street.

RECOMMENDATIONS

Traffic generated by Prado Ranch Area 4 will have some impact on the adjacent street network. The following recommendations are made to mitigate project buildout traffic impacts.

It is recommended that any required signing, striping, or traffic control improvements comply with Washoe County requirements.

It is recommended that the Lemmon Drive/Nectar Street intersection be improved to include an exclusive right turn lane at the south approach containing 245 feet of storage/deceleration length with a 100 foot taper.

It is recommended that the Lemmon Drive/Prado Ranch Boulevard intersection be designed to include stop sign control and separate left and right turn lanes at the east approach and an exclusive right turn lane at the south approach containing 245 feet of storage/deceleration length with a 100 foot taper.

It is recommended that the Nectar Street access road shown on the project site plan be eliminated and a new access connection be provided on Nectar Street from an extension of the most easterly internal north/south street. It is recommended that the segment of this new connection road between Nectar Street and the first internal east/west street be designed to collector street standards.

APPENDIX

Trip Generation Summary - Alternative 1

Project: New Project
Open Date: $1 / 2 / 2018$
Alternative: Alternative 1
Analysis Date: 1/2/2018

	Average Daily Trips			AM Peak Hour of Adjacent Street Traffic			PM Peak Hour of Adjacent Street Traffic		
ITE Land Use	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
210 SFHOUSE 1	2470	2469	4939	97	289	386	301	177	478
538 Dwelling Units									
Unadjusted Volume	0	0	0	0	0	0	0	0	0
Internal Capture Trips	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0
Volume Added to Adjacent Streets	0	0	0	0	0	0	0	0	0

Total AM Peak Hour Internal Capture $=0$ Percent
Total PM Peak Hour Internal Capture $=0$ Percent

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

General Information

Analyst	MSH	S
Agency/Co.	Solaegui Engineers	In
Date Performed	$1 / 2 / 2018$	Jur
Analysis Year	2018	N
Time Analyzed	AM Existing	Pe
Intersection Orientation	North-South	An
Project Description		
Ianes		

Lanes

Site Information

Intersection	Lemmon \& Arkansas
Jurisdiction	Washoe County
East/West Street	Arkansas Street
North/South Street	Lemmon Drive
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach							und				und			Sou	ound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						19		0			63	5		1	248	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
	0															
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																

Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

HC57 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Arkansas
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Arkansas Street
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	PM Existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Major Street North-South

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	u	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						10		1			305	27		1	147	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized	No					No			No				No			
Median Type/Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information	Site Information		
Analyst	MSH	Intersection	Lemmon \& Arkansas
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Arkansas Street
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	14	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						19		0			158	5		1	531	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Arkansas
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Arkansas Street
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Major Street North-South

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	u	L	T	R	U	L	T	R	u	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						10		1			600	27		1	320	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)							12							1		
Capacity, c (veh/h)							273							911		
v/c Ratio							0.04							0.00		
95\% Queue Length, Q95 (veh)							0.1							0.0		
Control Delay (s/veh)							18.8							9.0		
Level of Service, LOS							C							A		
Approach Delay (5 /veh)					18.8								0.0			
Approach LOS					C											

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Arkansas
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Arkansas Street
Analysis Year	2028	North/South Street	Lemmon Drive
Time Analyzed	AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			
Lanc\|			

Lanes

Vehicle Volumes and Adjustments

General Information

Analyst	MSH
Agency/Co.	Solaegui Engineers
Date Performed	$1 / 2 / 2018$
Analysis Year	2028
Time Analyzed	PM
Intersection Orientation	North-South
Project Description	

Site Information

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						10		1			726	27		1	419	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																

Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information

Analyst	MSH	Intersection	Lemmon \& Nectar
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Nectar Street
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	AM Existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach						We	und				und			Sou	ound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						29		1			61	2		1	220	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized	No															
Median Type/Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information	MSH	Site Information	
Analyst	Solaegui Engineers	Intersection	Lemmon \& Nectar
Agency/Co.	$1 / 2 / 2018$	Jurisdiction	Washoe County
Date Performed	2018	East/West Street	Nectar Street
Analysis Year	PM Existing	North/South Street	Lemmon Drive
Time Analyzed	North-South	Peak Hour Factor	0.92
Intersection Orientation		Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	u	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	40	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						25		3			259	47		3	123	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)							30							3		
Capacity, C (veh/h)							580							1226		
v/c Ratio							0.05							0.00		
95\% Queue Length, Q99 (veh)							0.2							0.0		
Control Delay (s/veh)							11.5							7.9		
Level of Service, LOS							B							A		
Approach Delay (s/veh)					11.5								0.2			
Approach LOS					B											

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Nectar
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Nectar Street
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						185		3			104	54		2	347	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Nectar
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Nectar Street
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						120		5			392	209		5	201	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized	No															
Median Type/Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)															
Critical Headway (sec)															
Base Follow-Up Headway (sec)															
Follow-Up Headway (sec)															

Delay, Queue Length, and Level of Service

General Information

Analyst	MSH
Agency/Co.	Solaegui Engineers
Date Performed	$1 / 2 / 2018$
Analysis Year	2028
Time Analyzed	AM
Intersection Orientation	North-South
Project Description	

Site Information

Intersection	Lemmon \& Nectar
Jurisdiction	Washoe County
East/West Street	Nectar Street
North/South Street	Lemmon Drive
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Critical and Follow-up Headways

Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information

Analyst	MSH	Sitemmon \& Nectar	
Agency/Co.	Solaegui Engineers	Intersection	Lemrisdiction
Date Performed	$1 / 2 / 2018$	East/West Street	Washoe County
Analysis Year	2028	North/South Street	Nectar Street
Time Analyzed	PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						120		5			518	209		5	300	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop Contriol Report

General Information		Site Information		
Analyst	MSH	Intersection	Lemmon \& Chickadee	
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County	
Date Performed	$1 / 2 / 2018$	East/West Street	Chickadee Drive	
Analysis Year	2018	North/South Street	Lemmon Drive	
Time Analyzed	AM Existing	Peak Hour Factor	0.92	
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25	
Project Description				
Lanes				

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Chickadee
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	1/2/2018	East/West Street	Chickadee Drive
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	PM Existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

General Information		Site Information		
Analyst	MSH	Intersection	Lemmon \& Prado Ranch	
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County	
Date Performed	$1 / 2 / 2018$	East/West Street	Prado Ranch Boulevard	
Analysis Year	2018	North/South Street	Lemmon Drive	
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.92	
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25	
Project Description				
Lanes				

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	u	L	T	R	\cup	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						142		6			61	46		2	207	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	MSH	Intersection	Lemmon \& Prado Ranch
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County
Date Performed	$1 / 2 / 2018$	East/West Street	Prado Ranch Boulevard
Analysis Year	2018	North/South Street	Lemmon Drive
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	u	L	T	R	u	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume, V (veh/h)						90		6			252	145		11	116	
Percent Heavy Vehicles (\%)						2		2						2		
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized	No															
Median Type/Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																

Delay, Queue Length, and Level of Service

General Information		Site Information		
Analyst	MSH	Intersection	Lemmon \& Prado Ranch	
Agency/Co.	Solaegui Engineers	Jurisdiction	Washoe County	
Date Performed	$1 / 2 / 2018$	East/West Street	Prado Ranch Boulevard	
Analysis Year	2028	North/South Street	Lemmon Drive	
Time Analyzed	AM	Peak Hour Factor	0.92	
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25	
Project Description				
Lanes				

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	MSH	Intersection
Agency/Co.	Solaegui Engineers	Jurisdiction
Date Performed	1/2/2018	East/West Street
Analysis Year	2028	North/South Stree
Time Analyzed	PM	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description		
Lanes		

Vehicle Volumes and Adjustments

Quality. Delivered.

1355 Capital Blyd. © P.O. Box 30013 • Reno, NV 89520-3013
(D) 775.834 .8080 • (1) 775.834 .8003

TO:
Pam Parenti
DATE: January 31, 2017

THRU: Scott Estes $5 \gamma \varepsilon$
FROM: Brooke Long ₹

RE: NVIG Annexation/Discovery, TMWA WO\# 15-4763 (Revised)

SUMMARY:

The proposed project includes a large development in Lemmon Valley, Nevada including residential and commercial development.

- The overall project consists of several areas along Lemmon Valley Drive.
- TMWA can provide water service to the overall project.
- The entire project lies outside TMWA's service territory and will require annexation prior to a water service agreement.
The primary purpose of this Annexation/Discovery is to identify the major water facility improvements to serve the NVIG development. In addition to the off-site improvements, high level planning of the on-site infrastructure to support the development was evaluated and presented in this document. The planning level cost opinion of the identified major backbone infrastructure improvements for the project is $\$ 11,932,392$.

Review of conceptual site plans or tentative maps by TMWA and/or agents of TMWA shall not constitute an application for service, nor implies a commitment by TMWA for planning, design or construction of the water facilities necessary for service. The extent of required off-site and onsite water infrastructure improvements will be determined by TMWA upon receiving a specific development proposal or complete application for service and upon review and approval of a water facilities plan by the local Health Authority. Because the NAC 445A Water System regulations are subject to interpretation, TMWA and/or agents of TMWA cannot guarantee that a subsequent water facility plan will be approved by the Health Authority or that a timely review and approval of the Project will be made. The Applicant should carefully consider the financial risk associated with committing resources to their Project prior to receiving all required approvals. After submittal of a complete Application for Service, the required facilities, the cost of these facilities, which could be significant, and associated fees will be estimated and will be included as part of the Water Service Agreement necessary for the Project. All fees must be paid to TMWA prior to water being delivered to the Project.

PURPOSE:

The purpose of this Discovery is to identify a planning level water service plan and an opinion of cost for the off-site facilities required to serve the proposed NVIG Development in Lemmon Valley Nevada, Nevada.

LOCATION:

The NVIG project is located in Lemmon Valley, Nevada (see Figure 1). The entire project is located outside the Truckee Meadows Water Authority's (TMWA) retail service territory and will require annexation by TMWA prior to a water service agreement. The Project will be subject to TMWA's Area 10 facility charges.

Table 1. Project Parcel APNs and Acreage.

APNs	TOTAL ACREAGE
080-721-02 thru 08	1580
080-723-01 thru 03	
080-730-11 thru 17	
089-030-01 thru 09	
080-281-01	
080-461-04, 27, 30	
080-671-55 thru 57	
568-041-05	
080-722-0	

DISCUSSION:

The total proposed Project includes 3,316 single family residential units, 528 multi-family residential units and 6 warehouse buildings totaling $3,201,740 \mathrm{SF}$.
Supply to the entire project can be met from the Fish Springs Ranch (FSR) supply via TMWA's $24^{\prime \prime}$ high pressure main in Lemmon Drive. In the event that the FSR supply is interrupted, flow from TMWA's Raleigh Heights pressure zone can be used to provide a backup supply for the proposed NVIG project. This can be accomplished by opening the 18 -inch normally closed valve located at Lemmon Dr and N Virginia St, allowing Raleigh Heights Tank Zone water to flow into the 24-inch Lemmon Dr transmission main.

For discussion purposes, the Project's water service plan was divided into six project areas shown in Figure 1.

NVIG Project, Area 1

Location: NVIG Area 1 is immediately west of Lemmon Dr, bordered to the north by Lear Drive and to the east by Lemmon Drive. The proposed NVIG Area 1 consists of 160 sfr units and 264 MFR units. In addition, Area 1 contains 62.1 acres of open space.

Demands:
The estimated NVIG Area 1 demand is 151.6 gpm (see Table 2).

Table 2. Estimated NVIG Area 1 Demands.

						Demand (gpm)		
Area	Name	Area		Average Lot Size $\text { (} \mathrm{sf} \text {) }$	Units	MDD	ADD	Usage Type
1	Village 1	31.8	Acres	5,195	160	112.0	42.9	sfr
1	Village 1A	12.7	Acres	-	264	39.6	15.2	mfr
1	Village 1	62.1	Acres	-	0	0	0	Open Space
Totals					424	151.6	58.1	

Project Storage:

The estimated storage volume required for NVIG Area 1 is 116,387 gallons. The storage volume is based on the project max day demand as follows:

Operating Storage Volume (15% of MDD) $=32,746$ gallons
Emergency Storage Volume (1 ADD) $=83,641$ gallons
Total NVIG Area 1 Storage Volume: $=116,387$ gallons

Project Pressures:

NVIG Area 1 topography is relatively level ranging in elevation from approximately 4918' to 4920 . Area 1 pressures will be on the order of $80-85$ psi.

Dead Ends and Looping:

Nevada Administrative Code section 445A. 6712 requires systems to be designed, to the extent possible, to eliminate dead ends (greater than 400-500 LF). As planned, Area 1 meets these conditions.

Project Fire Flow:

Fire flow requirements are established by the local fire authority. The maximum Area 1 fire flow is assumed to be $3,000 \mathrm{gpm}$ for 3 hours (540,000 gallons) for the multi-family residential portion of the development. TMWA has adequate storage to accommodate the project.

Major Water System Improvements and Cost Opinion

The major water system improvements to serve Area 1 and a planning level cost opinion are listed in Table 3 and shown in Figure 2.

Table 3. Area 1 Major Water System Improvements and Associated Costs

NVIG Area 1				
Description	Quantity	Unit	Unit Cost	Total Cost
Area 10 Facility Charge	151.6	MDD, gpm	$\$ 5,057$	$\$ 766,641$
Tie in to 8" stub (off high pressure main) and install a SCADA controlled PRS at Patrician Dr and Lemmon Dr.	1	L.S.	$\$ 175,000$	$\$ 175,000$
Remove 10" main within Area 1 from Compton St to Lemmon Drive. A dedicated replacement main is not required, rather Project mains with an equivalent capacity, can be used. (see Figure 2).	1	L.S.	$\$ 30,000$	$\$ \mathbf{\$ 3 0 , 0 0 0}$
Tie-in to the 12" Lemmon main (part of10" main relocation)	1	L.S.	$\$ 30,000$	$\$ 30,000$
8" main to Patrician Dr (Looping)	300	L.F.	$\$ 144$	$\$ 43,200$
			Sub Total	$\mathbf{\$ 1 , 0 4 4 , \mathbf { 8 4 1 }}$

$M D D=$ Maximum Day Demand, L.F. $=$ Linear Feet, L.S. $=$ Lump Sum

NVIG Project, Area 2

Location: NVIG Area 2 is east of Lemmon Dr bordered to the north by Arkansas Drive. The proposed NVIG Area 2 consists of 6 warehouses and 264 MFR units (Village 1B).

Demands:
The total estimated NVIG Area 2 demand is 62.0 gpm . Demand details are shown in Table 4.

Table 4. Estimated NVIG Area 2 Demands.

Area				Units	Demand (gpm)		
		Area			MDD	ADD	Usage Type
2	Bldng 1	458,560	$\mathrm{ft}^{\wedge} 2$	1	3.2	2.7	Ind/Com
2	Bldng 2	512,560	$\mathrm{ft}^{\wedge} 2$	1	3.6	3.1	Ind/Com
2	Bldng 3	512,580	$\mathrm{ft}^{\wedge} 2$	1	3.6	3.1	Ind/Com
2	Bldng 4	487,180	$\mathrm{ft}^{\wedge} 2$	1	3.4	2.9	Ind/Com
2	Bldng 5	487,180	$\mathrm{ft}^{\wedge} 2$	1	3.4	2.9	Ind/Com
2	Bldng 6	743,680	$\mathrm{ft}^{\wedge} 2$	1	5.2	4.4	Ind/Com
2	Village 1B	12.5	Acres	264	39.6	15.2	mfr
			Total	270	62.0	34.3	

Project Storage:

The estimated storage volume required for NVIG Area 1 is 62,810 gallons. The storage volume is based on the project max day demand as follows:

Operating Storage Volume (15% of MDD) $=13,392$ gallons
Emergency Storage Volume (1 ADD) $=49,418$ gallons
Total NVIG Area 2 Storage Volume: $=\mathbf{6 2 , 8 1 0}$ gallons

Project Pressures:

Area 2 lies within TMWA's Lemmon Valley 1 pressure zone. NVIG Area 2 service elevations range from approximately 4919^{\prime} to 4967^{\prime}. Area 2 pressures range from $65-90 \mathrm{psi}$, due to elevation and demand variations.

Dead Ends and Looping:

Nevada Administrative Code section 445A. 6712 requires systems to be designed, to the extent possible, to eliminate dead ends (greater than 400-500 LF). As planned, Area 2 meets these conditions.

Project Fire Flow:

Fire flow requirements are established by the local fire authority. The maximum Area 2 fire flow is assumed to be $4,000 \mathrm{gpm}$ for 4 hours (960,000 gallons). This fire flow can be achieved with the proposed plan.

Major Water Facility Improvements Required:

Major water facility improvements and an opinion of cost are listed in Table 5 and shown on Figure 3.

Table 5. Area 2, Major Water Facility Improvements and Associated Costs

NVIG Area 2				
Description	Quantity	Unit	Unit Cost	Total Cost
Area 10 Facility Charge	62.0	MDD, gpm	$\$ 5,057$	$\$ 313,534$
Tap or cut in a tee to the 24" high pressure main and 12" stub to project (Arkansas and Lemmon)	1	L.S.	$\$ 50,000$	$\$ 50,000$
SCADA controlled pressure reducing station near Arkansas and Lemmon Dr. (260 PSI to 80 psi)	1	L.S.	$\$ 150,000$	$\$ 150,000$
Tie-in to existing 8" and 8" stub-out to property	1	L.S.	$\$ 50,000$	$\$ 50,000$
8" main to Patrician Dr (Looping)	300	L.F.	$\$ 144$	$\$ 43,200$
Tie-in to the $12^{\prime \prime}$ Lemmon main (part of $10 "$ main relocation)	1	L.S.	$\$ 30,000$	$\$ 30,000$

$M D D=$ Maximum Day Demand, L.F. $=$ Linear Feet, L.S. $=$ Lump Sum

NVIG Project, Areas 3 and 5

No water service was planned for Area 3 or Area 5. If water service is desired for the proposed park, the existing $8^{\prime \prime}$ main aligned on the west side of Lemmon Drive can be tapped.

Location:

NVIG Area 3 consists of 37.5 acres, split by Lemmon Dr, and is bordered to the north and south by Nectar St and Arkansas Drive, respectively (see Figure 1).

NVIG Area 5 consists of 194.6 acres, bordered by Swan Lake to the West and Lemmon Drive to the east.

Demands:

The total estimated NVIG Area 3 and 5 demand is 0 gpm (see Table 6).

Table 6. Estimated NVIG Area 3 and 5 Demands.

						Demand (gpm)		
Area	Name	Area		Average Lot Size (sf)	Units	MDD	ADD	Usage Type
3	-	37.5	Acres	-	0	-	-	Open Space
5	-	188.8	Acres	-	0	-	-	Open Space
5	-	5.8	Acres	-	0	-	-	Park
			Total		0	0.0	0.0	

NVIG Project, Areas 4 and 6

NVIG areas 4 and 6 are adjacent with shared water infrastructure.

Location:

Area 4 is east of Lemmon Dr, bordered to the north by Chickadee, south by Nectar Street and east by Chesapeake (Figure 1).

Area 6 is located immediately north of area 4.

Water Supply:

Supply to NVIG areas 4 and 6 can be met from the Fish Springs Ranch high pressure supply main in Matterhorn Blvd. Two supply points are planned including one at the northwest corner of NVIG Area 6 and the other at Matterhorn Blvd and Pepper Way (see Figure 4). The proposed tie-in at Pepper Way can be made to an existing $10^{\prime \prime}$ flanged outlet. There is no stubout at the second connection location. The tie-in at this location will require a 30 " $\times 12^{\prime \prime}$ TEE or a tapping sleeve capable of withstanding the main pressures of 250 psi .

Demands:

The total estimated maximum day demands for NVIG Areas 4 and 6 are 529.3 gpm and 1661.2 gpm, respectively. Demand details are shown in Tables 7 and 8.

Table 7. Estimated NVIG Area 4 Demands.

						Demand (gpm)		
Area	Name	Area		Average Lot Size (sf)	Units	MDD	ADD	Usage Type
4	Village 1	33.9	Acres	4,725	142	85.2	32.6	sfr
4	Village 2	29.8	Acres	6,300	125	87.5	33.5	sfr
4	Village 3	34.3	Acres	5,250	144	100.8	38.6	sfr
4	Village 4	33	Acres	5,775	139	97.3	37.3	sfr
4	Village 5	25.5	Acres	5,775	107	74.9	28.7	sfr
4	Buffer Lots	26.3	Acres	15,000	76	83.6	32.0	
			Total		733	529.3	202.8	

Table 8. Estimated NVIG Area 6 Demands.

						Demand		
Area	Village	Size	Units	Average Lot Size (sf)	Units	$\begin{aligned} & \text { MDD } \\ & (\mathrm{gpm}) \end{aligned}$	$\begin{gathered} \mathrm{ADD} \\ (\mathrm{gpm}) \end{gathered}$	Usage Type
6	14	29.3	Acres	5,250	123	86.1	33.0	sfr
6	15	30.8	Acres	5,775	129	90.3	34.6	sfr
6	16	30.2	Acres	4,725	127	76.2	29.2	sfr
6	17	25.7	Acres	4,725	108	64.8	24.8	sfr
6	18	36.4	Acres	5,250	153	107.1	41.0	sfr
6	6	42.1	Acres	5,250	177	123.9	47.5	sfr
6	7	29.7	Acres	4,725	125	75.0	28.7	sfr
6	8	23.3	Acres	5,250	98	68.6	26.3	sfr
6	9	29.3	Acres	5,775	123	86.1	33.0	sfr
6	19	31	Acres	4,725	130	78.0	29.9	sfr
6	20	31.1	Acres	4,725	131	78.6	30.1	sfr
6	21	28.7	Acres	5,775	120	84.0	32.2	sfr
6	22	24.5	Acres	5,775	103	72.1	27.6	sfr
-	-	10.7	Acres	-	0	-	-	School
6	10	44.6	Acres	5,775	187	130.9	50.2	sfr
6	11	34.3	Acres	6,300	144	100.8	38.6	sfr
6	12	51.3	Acres	6,300	215	150.5	57.7	sfr
6	13	38.5	Acres	6,300	162	113.4	43.4	sfr
6	Buffer Lots	23.5	Acres	15,000	68	74.8	28.7	sfr
			Total	107400	2423	1661.2	636.5	

Project Storage:

The estimated storage volume required for NVIG Areas 4 and 6 is $1,681,700$ gallons. The storage volume is based on the project max day demand as follows:

Operating Storage Volume (15% of MDD) $=473,148$ gallons
Emergency Storage Volume (1 ADD $)=1,208,552$ gallons
Total NVIG Area 4 and 6 Storage Volume: $=1,681,700$ gallons

Project Pressures:

Two pressure zones are required to serve the elevation range of Areas 4 and 6 and maintain a service pressure range of 80 psi to 45 psi . Service elevations range from approximately 4916' to 5075 '.

Dead Ends and Looping:

Nevada Administrative Code section 445A. 6712 requires systems to be designed, to the extent possible, to eliminate dead ends (greater than 400-500 LF).

Project Fire Flow:

Fire flow requirements are established by the local fire authority. The maximum area fire flow is assumed to be 1500 gpm for 2 hours (180,000 gallons). This fire flow can be achieved with the proposed plan.

Major Water Facility Improvements Required:

The major improvements required for water service to NVIG areas 4 and 6 are listed in Table 8 and shown on Figure 4.
The major off-site project improvements to serve the NVIG Areas 4 and 6, and associated costs, are listed in Table 9.

Table 9. Areas 4 and 6, Major Water Facility Improvements and Associated Costs

NVIG Areas 4 and 6				
Description	Quantity	Unit	Unit Cost	Total Cost
Area 10 Facility Charge, reduced*	831.0	MDD, gpm	$\$ 3,575$	$\$ 2,970,825$
Area 10 Facility Charge, non-reduced*	$1,359.5$	MDD, gpm	$\$ 5,057$	$\$ 6,874,992$
INSTALL 30"x12" TEE (PROJECT SUPPLY) AND STUB TO PROJECT	1	L.S.	$\$ 50,000$	$\$ 50,000$
CONNECT TO EXISTING 10" FLANGED OUTLET OFF 30" MAINAT MATTERHORNAND PEPPER AND STUB TO PROJECT (PROJECT SUPPLY)	1	L.S.	$\$ 15,000$	$\$ 15,000$
ON-SITE PRESSURE REDUCING STATIONS	2	L.S.	$\$ 70,000$	$\$ 140,000$
OFF-SITE PRESSURE REDUCING STATIONS	2	L.S.	$\$ 100,000$	$\$ 200,000$
			Sub Total	$\$ 10,250,817$

$M D D=$ Maximum Day Demand, L.F. $=$ Linear Feet, L.S. $=$ Lump Sum
*TMWA's Area 10 Water Facility Charge (WFC) is $\$ 5057$ per gpm of maximum day demand (MDD). However, there is a reduced/modified TMWA Area 10 WFC for development served directly from the terminal tank (Fish Springs Ranch supply) of $\$ 3,575$ per GPM of MDD. This reduced charge is limited to 831 gpm of MDD and will be applied on a first come first served basis.

Project Summary:

The total project demands, required storage and major water system improvements and planning level costs are summarized in Tables 10 through 12.

Table 10. Total Project Demands

Area	Name				$\begin{gathered} \text { Units } \\ \hline 160 \\ \hline \end{gathered}$	Demand (gpm)		Usage Type
		Area		Average Lot Size (sf) 5,195		MDD 112.0	$\begin{aligned} & \text { ADD } \\ & 42.9 \\ & \hline \end{aligned}$	
1	Village 1	31.8	Acres					sfr
1	Village 1A	12.7	Acres	-	264	39.6	15.2	mfr
1	Village 1	62.1	Acres	.	0	0	0	Open Space
2	Bldng 1	458,560	$\mathrm{ft}^{\wedge} 2$.	1	3.2	2.7	Ind/Com
2	Bldng 2	512,560	$\mathrm{ft}^{\wedge} 2$	-	1	3.6	3.1	Ind/Com
2	Bldng 3	512,580	$\mathrm{ft}^{\wedge} 2$	-	1	3.6	3.1	Ind/Com
2	Bldng 4	487,180	$\mathrm{ft}^{\wedge} 2$	-	1	3.4	2.9	Ind/Com
2	Bldang 5	487,180	$\mathrm{ft}^{\wedge} 2$	-	1	3.4	2.9	Ind/Com
2	Bldng 6	743,680	$\mathrm{ft}^{\wedge} 2$.	1	5.2	4.4	Ind/Com
2	Village 1B	12.5	Acres	\cdot	264	39.6	15.2	mfr
3		37.5	Acres	-	0	-	.	Open Space
4	Village 1	33.9	Acres	4,725	142	85.2	32.6	sfr
4	Village 2	29.8	Acres	6,300	125	87.5	33.5	sfr
4	Village 3	34.3	Acres	5,250	144	100.8	38.6	sfr
4	Village 4	33	Acres	5,775	139	97.3	37.3	sfr
4	Village 5	25.5	Acres	5,725	107	74.9	28.7	sfr
4	Buffer Lots	26.3	Acres	15,000	76	83.6	32.0	sfr
5	-	188.8	Acres	-	0	-	-	Open Space
5	-	5.8	Acres	$-$	0	-	-	Park
6	14	29.3	Acres	5,250	123	86.1	33.0	sfr
6	15	30.8	Acres	5,775	129	90.3	34.6	sfr
6	16	30.2	Acres	4,725	127	76.2	29.2	sfr
6	17	25.7	Acres	4,725	108	64.8	24.8	sfr
6	18	36.4	Acres	5,250	153	107.1	41.0	sfr
6	6	42.1	Acres	5,250	177	123.9	47.5	sfr
6	7	29.7	Acres	4,725	125	75.0	28.7	sfr
6	8	23.3	Acres	5,250	98	68.6	26.3	sfr
6	9	29.3	Acres	5,775	123	86.1	33.0	sfr
6	19	31	Acres	4,725	130	78.0	29.9	sfr
6	20	31.1	Acres	4,725	131	78.6	30.1	sfr
6	21	28.7	Acres	5,775	120	84.0	32.2	sfr
6	22	24.5	Acres	5,775	103	72.1	27.6	sfr
.	.	10.7	Acres	-	0	$-$	-	School
6	10	44.6	Acres	5,775	187	130.9	50.2	sfr
6	11	34.3	Acres	6,300	144	100.8	38.6	sfr
6	12	51.3	Acres	6,300	215	150.5	57.7	sfr
6	13	38.5	Acres	6,300	162	113.4	43.4	sfr
6	Buffer Lots	23.5	Acres	15,000	68	74.8	28.7	sfr
			Total		3850	2404.1	931.7	

Table 11. Major Project Water Facility Improvements

NVIG Area 1				
Description	Quantity	Unit	Unit Cost	Total Cost
Area 10 Facility Charge	151.6	MDD, gpm	\$5,057	\$766,641
Tie in to $8^{\prime \prime}$ stub (off high pressure main) and install a SCADA controlled PRS at Patrician Dr and Lemmon Dr.	1	L.S.	\$175,000	\$175,000
Remove $10^{\prime \prime}$ main within Area 1 from Compton St to Lemmon Drive. A dedicated replacement main is not required, rather Project mains with an equivalent capacity, can be used. (see Figure 2).	1	L.S.	\$30,000	\$30,000
Tie-in to the $12^{\prime \prime}$ Lemmon main (part of $10^{\prime \prime}$ main relocation)	1	L.S.	\$30,000	\$30,000
8" main to Patrician Dr (Looping)	300	L.F.	\$144	\$43,200
			Sub Total	\$1,044,841
NVIG Area 2				
Description	Quantity	Unit	Unit Cost	Total Cost
Area 10 Facility Charge	62.0	MDD, gpm	\$5,057	\$313,534
Tap or cut in a tee to the 24 " high pressure main and 12 " stub to project (Arkansas and Lemmon)	1	L.S.	\$50,000	\$50,000
SCADA controlled pressure reducing station near Arkansas and Lemmon Dr. (260 PSI to 80 psi)	1	L.S.	\$150,000	\$150,000
Tie-in to existing $8^{\prime \prime}$ and $8^{\prime \prime}$ stub-out to property	1	L.S.	\$50,000	\$50,000
8' main to Patrician Dr (Looping)	300	L.F.	\$144	\$43,200
Tie-in to the 12" Lemmon main (part of 10" main relocation)	1	L.S.	\$30,000	\$30,000
			Sub Total	\$636,734
NVIG Areas 4 and 6				
Description	Quantity	Unit	Unit Cost	Total Cost
Area 10 Facility Charge, reduced*	831.0	MDD, gpm	\$3,575	\$2,970,825
Area 10 Facility Charge, non-reduced*	1,359.5	MDD, gpm	\$5,057	\$6,874,992
INSTALL 30"x12" TEE (PROJECT SUPPLY) AND STUB TO PROJECT	1	L.S.	\$50,000	\$50,000
CONNECT TO EXISTING 10" FLANGED OUTLET OFF 30" MAIN AT MATTERHORN AND PEPPER AND STUB TO PROJECT (PROJECT SUPPLY)	1	L.S.	\$15,000	\$15,000
ON-SITE PRESSURE REDUCING STATIONS	2	L.S.	\$70,000	\$140,000
OFF-SITE PRESSURE REDUCING STATIONS	2	L.S.	\$100,000	\$200,000
			Sub Total	\$10,250,817
Total $\quad \$ 11,932,392$				

*TMWA's Area 10 Water Facility Charge (WFC) is $\$ 5057$ per gpm of maximum day demand (MDD). However, there is a reduced/modified TMWA Area 10 WFC for development served directly from the terminal tank (Fish Springs Ranch supply) of $\$ 3,575$ per GPM of MDD. This reduced charge is limited to 831 gpm of MDD and will be applied on a first come first served basis. In general, the entire NVIG project is directly served from TMWA's Terminal Tank.

Table 12. Project Water Storage Requirements

Area	Maximum Day Demand	Average Day Demand	Operating Storage	Emergency Storage	Total Storage Required
$\mathbf{1}$	151.6	58.1	32,746	83,641	116,387
2	62.0	34.3	13,392	49,418	62,810
$\mathbf{3}$	0	0	0	0	0
4	529.3	202.8	114,329	292,028	406,356
$\mathbf{5}$	0	0	0	0	0
6	1661.2	636.5	358,819	916,524	$\mathbf{1 , 2 7 5 , 3 4 3}$
Totals	$\mathbf{2 , 4 0 4 . 1}$	$\mathbf{9 3 1 . 7}$	$\mathbf{5 1 9 , 2 8 6}$	$\mathbf{1 , 3 4 1 , 6 1 1}$	$\mathbf{1 , 8 6 0 , 8 9 6}$

TMWA's Fish Springs Tank 1 has 1 MG of available distribution storage. An additional 2.5 MG tank is planned for year 2022.

PROJECT ASSUMPTIONS:

1. The applicant shall be responsible for all application, review, inspection, storage, treatment, permits, easements, and other fees pertinent to the Project as adopted by the TMWA at the time of execution of a water service agreement.
2. The cost opinions contained herein do not include new business fees, cost of water rights and related fees, or contribution to the water meter retrofit fund.
3. Demand calculations, and fees based on demands, are estimates; actual fees will be determined at the time of application for service.
4. The assumed fire flow requirements for this project are as follows:

- $1,500 \mathrm{gpm}$ in single family residential areas.
- 2,500 gpm for 2 hours in MFR areas.
- $4,000 \mathrm{gpm}$ for 4 hours in commercial areas.

5. Project pressure criteria are:
a. Maximum day pressure of at least 45 pounds per square inch (psi) at the ground surface elevation at the service connection with tank level at top of fire storage,
b. Peak hour pressure of at least 40 psi at building pad elevation with tank level at top of emergency storage,
c. Maximum day plus fire flow pressure of at least 20 psi at center of street elevation with tank level at bottom of fire storage, and
d. TMWA does not calculate pressures for multi-story buildings. Confirmation that pressure will be adequate for upper stories is the responsibility of the Applicant.
6. A site grading plan with elevations was not provided. Elevations used for this discovery were from the existing Washoe County topographic information.
7. Facility requirements for the Project are based on the site topography, maximum day demand, and fire flow requirements. Changes in these may affect facility requirements.
8. Easements, permits and all pertinent Agency approvals are obtained for the design and construction of the water infrastructure necessary to serve the proposed Project.
9. All cost opinions are preliminary and subject to change. The costs presented in this study are planning level estimates based on the information available. Actual costs will be determined at the time of application for service. Cost opinions do not include on-site improvements made by the applicant.
10. This discovery is based on the current status of TMWA's system. Future development may alter the conclusions of this discovery. Capacity in TMWA's system is available on a first-come, first-served basis, and commitment to provide service is not established until a contract for service is executed and all fees are paid.
11. Water resources for the project will be obtained from the Vidler Water Company's Fish Spring's Ranch. Although the Fish Springs Ranch water rights are held by Vidler, TMWA owns the importation water infrastructure, originating at the Fish Springs Ranch and terminating in Lemmon Valley.
12. The costs of the Vidler Water Resource are not included in this Annexation/Discovery.
13. No water demands were included for the open space areas, public facilities or parks.
14. Project maximum day demands were calculated using the following equations:

Single-Family Units: Domestic Maximum Day Usage
$Y=0.009 * \sqrt{x}$
$\mathrm{Y}=$ maximum day demand in gpm
$x=$ lot size in square feet
Add irrigation for common areas as needed
Multi-Family Units: Domestic Maximum Day Usage
0.15 gpm per unit

Add irrigation for common areas as needed
Commercial/Industrial: Domestic Maximum Day Usage
Multiply water rights demand (in acre-feet) by 1.17
Add irrigation for common areas as needed
Potable Irrigation: Maximum Day Usage
Multiply water rights demand (in acre-feet) by 0.38
15. TMWA plans to reevaluate the maximum day demand equations for all customer usage types within the next 12 months, as part of a Water Facility Plan Update.

1355 Capital Blvd. • P.O. Box 30013 • Reno, NV 89520-3013

(D) 775.834 .8080 - (ㄷ) 775.834.8003

Date: Revised January 4, 2017
To: Pam Parenti
From: David Nelson
RE: $\quad 15-4763$, NVIG D2 \& Annexation, Residential \& Industrial (APN 080-281-01, 080-461-04, 080-461-27, 080-461-30, etc.)

The New Business/Water Resource team will answer the following assumptions on each new discovery:

- Is the property within Truckee Meadows Water Authority's water service territory?
- Does the property have Truckee River water rights appurtenant to the property, groundwater or resource credits associated with the property?
- If yes, what is the status of the water right: Agricultural or Municipal and Domestic use?
- Estimated water demand for residential and or commercial projects.
- Any special conditions, or issues, that are a concern to TMWA or the customer.

The following information is provided to complete the Discovery as requested:

- These subject parcels (APN (APN 080-281-01, 080-461-04, 080-461-27, 080-461-30, etc.) are not within Truckee Meadows Water Authority's (TMWA's) service territory. An annexation is required.
- There are no resource credits or Truckee River decreed water rights appurtenant to these properties. The developer will be required to follow TMWA's current rules, specifically Rule 7, and pay all fees for water rights needed in order to obtain a will serve commitment letter.
- Based on the information provided by the applicant this project "NVIG" is estimated to require a domestic demand of $\mathbf{1 1 9 6 . 1 3}$ acre feet (AF). Landscaping, park, and school plans were not provided to TMWA; therefore, an additional demand could not be determined. Please see the attached demand calculation sheet for the estimated demand and water resource fees. Once final plans are submitted a more accurate demand will be calculated. Note: Water rights held or banked by the applicant must be dedicated to a project before any rule 7 water rights are purchased from TMWA. TMWA's resources are limited in this area and are first come first serve. If applicant dedicates surface water for this project additional fees and dedications will apply.
- Any existing right of ways and public easements would need to be reviewed, and if needed the property owner will need to grant TMWA the proper easements and/or land dedications to provide water service to the subject properties. Property owner will be required, at its sole expense, to provide TMWA with a current preliminary title report for all subject properties. Owner will represent and warrant such property offered for dedication or easements to TMWA shall be free and clear of all liens and encumbrances. Owner is solely responsible for obtaining all appropriate permits, licenses, construction easements, subordination agreements, consents from lenders, and other necessary rights from all necessary parties to dedicate property or easements with title acceptable to TMWA.

Truckee Meadows Water Authority is a not-for-profit, community-owned water utility, overseen by elected officials and citizen appointees from Reno, Sparks and Washoe County.

WATER RIGHTS AND METER FUND CONTRIBUTION CALCULATION WORKSHEET FOR MULTI-TENANT/COMMERCIAL APPLICATIONS

				Demand (Acre Feet)			
1	Existing dem	(current usage) at Service Property		0.00			
2	Number	its 528	x .12 (Apartments)	63.36			
3	Warehou	or space: $\quad \mathbf{3 , 2 0 1 , 7 4 0}$	x 0.000006 per sq.ft.	19.21			
4	Number	ts (SFR) 3,316	x.0.34 avg. per. lot	1113.56			
5	Landscap	Turf	sq ft $\times 3.41 / 43,560$	T131)			
6	Drip			TBD			
7	Other cal	ed demand		TBD			
8	New or add	al demand at Service Property (line	$3+4+5+6)$	1196.13			
9	Total Dema	Service Property (lines 1+8)		1196.13			
10	Less: Pri	mand commitments at service prop		0.00			
11	Less: Oth	source credits: on subject parcel		0.00			
12	Total Cred	nes 10+11)		$\underline{0.00}$			
13	Subtotal: Re	d resource dedication/commitmen	9-12)	1196.13			
	Factor amou	$11 \times$ Line 13)		0.00			
15	No return flo	quired		$\underline{0.00}$			
16	TOTAL RE	RCES REQUIRED (lines 13+14		$\underline{1196.13}$			
17	Price of Wat	ghts per AF $\quad \$ 7,500$			\$	TBD	
18	Will Scrve C	itment Letter Preparation Fee (\$100	er letter)		\$		100
19	Due Diligenc	(\$150.00 per parcel)			\$	TBD	
20	Document P	ation Fees (\$100.00 per document)			\$	TBD	
21	Meter Contri	($\$ 1,830 \times 1196.13$ acre fcet of d			\$	TBD)	
	TOTAL FE	UE (lines 17+18+19+20+21)			\$		100
	Project:	NVIG D2 and Annexation					
	Applicant:	NVIG, LLC - Attn Dustin Barke		Quote date:	Revised 1/4/2017		
	Phone:	775-815-8425		Tech contact:	David 834-8021		
	APN:	080-281-01, 080-461-04, 080-461	, 080-461-30, etc.	Project No:	15-4763		
Remarks:		Fees quotes are valid only within 15 calendar days of Quote Date. Esitmate only displays demand.					
		The $\mathbf{1 1 9 6 . 1 3}$ acre feet may result in the assessment of facility fees pursuant to TMWA's Rules and Rates.					
		This estimate displays water demand off information received from applicant. At time of project submittal					
		a more exact demand will be calculated and resources for dedication will be reviewed for approval.					

PRADO RANCH NORTH

TENTATIVE MAP
TITLE SHEET

VICINITY MAP

SITE PLAN

SITE INFORMATION:

ENGINEERS STATEMENT

TITLE SHEET PRADO RANCH NORTH

PRADO RANCH NORTH

PRADO RANCH NORTH

TENTATIVE MAP

LOT AND BLOCK PLAN

PRADO RANCH NORTH

TENTATIVE MAP

LOT AND BLOCK PLAN

PRADO RANCH NORTH

TENTATIVE MAP

LOT AND BLOCK PLAN

NORTH VALLEYS INVESTMENT
GROUP LLC

PRADO RANCH NORTH

PRADO RANCH NORTH

PRADO RANCH NORTH

LEGEND:

\qquad

GRADING NOTES:
Col foreas volum repucemen Porin

ASSEMBLIES OF GOD

PRADO RANCH NORTH GRADING PLAN

PRADO RANCH NORTH

TENTATIVE MAP
 GRADING PLAN

PRADO RANCH NORTH

LEGEND:

GRADING NOTES: \qquad

 Lin Ricelir

©

166901

PRADO RANCH NORTH

TENTATIVE MAP
\qquad

GRADING NOTES: \qquad

 compleit onste gradmg.

PRADO RANCH NORTH GRADING PLAN

PRADO RANCH NORTH

TENTATIVE MAP
PRELIMINARY CROSS SECTIONS
Reanmo wall
NMIHESPAH

$$
\text { (C.S.) } \frac{\text { TYPICAL SECTION }}{\text { noroscale }}
$$

PRELIMINARY CROSS SECTIONS

